Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 386, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493270

RESUMEN

BACKGROUND: Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS: The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS: The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.


Asunto(s)
Abejas/fisiología , Núcleo Celular/genética , Biología Computacional/métodos , Mitocondrias/genética , Animales , Abejas/clasificación , Abejas/genética , Conducta Animal , Orden Génico , Tamaño del Genoma , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencias Repetitivas Esparcidas , ARN Largo no Codificante/genética , Conducta Social , Secuenciación Completa del Genoma
2.
Parasitol Res ; 114(5): 1769-77, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25663106

RESUMEN

Ubiquitin-conjugating enzymes (Ub-E2) perform the second step of ubiquitination and, consequently, are essential for regulating proteolysis and for modulating protein function, interactions and trafficking. Previously, our group demonstrated the crucial role of ubiquitination and the Ub-proteasome pathway during the Schistosoma mansoni life cycle. In the present investigation, we used a homology-based genome-wide bioinformatics approach to identify and molecularly characterise the Ub-E2 enzymes in S. mansoni. The putative functions were further investigated through molecular phylogenetic and expression profile analyses using cercariae, adult worms, eggs and mechanically transformed schistosomula (MTS) cultured in vitro for 3.5 h or 1 or 3 days. We identified, via in silico analysis, 17 Ub-E2 enzymes with conserved structural characteristics: the beta-sheet and the helix-2 form a central core bordered by helix-1 at one side and helix-3 and helix-4 at the other. The observed quantitative differences in the steady-state transcript levels between the cercariae and adult worms may contribute to the differential protein ubiquitination observed during the parasite's life cycle. This study is the first to identify and characterise the E2 ubiquitin conjugation family in S. mansoni and provides fundamental information regarding their molecular phylogenetics and developmental expression during intra-mammalian stages.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas del Helminto/metabolismo , Schistosoma mansoni/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Cercarias/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/genética , Estadios del Ciclo de Vida/fisiología , Filogenia , Complejo de la Endopetidasa Proteasomal/genética , Schistosoma mansoni/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
3.
Bull Environ Contam Toxicol ; 93(4): 405-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25151280

RESUMEN

Changes in protein levels and lipid compositions in algal cells indicate the severity of stress related to toxic concentrations of heavy metals. In this study, the effects of exposure to cadmium and copper on Chlorella vulgaris and its capacity to remove metals were evaluated. The data revealed ion removal activity by microalgae under all treatments and different levels of protein expression after 48 h of exposure. Furthermore, we analyzed lipids contents to characterize them.


Asunto(s)
Cadmio/metabolismo , Cadmio/toxicidad , Chlorella vulgaris/efectos de los fármacos , Cobre/toxicidad , Absorción , Proteínas Algáceas/metabolismo , Chlorella vulgaris/metabolismo , Cobre/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Análisis de Componente Principal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Parasitol Res ; 112(12): 4151-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013345

RESUMEN

Several proteins and different species of RNA that are produced in the nucleus are exported through the nuclear pore complexes, which require a family of conserved nuclear export receptors called exportins (XPOs). It has been reported that the XPOs (XPO1, XPO5, and XPOT) are directly involved in the transport processes of noncoding RNAs from the nucleus to the cytoplasm and/or from cytoplasm to the nucleus. All three genes are present in fungi, plants, and deuterostome metazoans. However, protostome metazoan species lack one of the three genes across evolution. In this report, we have demonstrated that all three XPO proteins are present in the parasite protostome Schistosoma mansoni. As this parasite has a complex life cycle presenting several stages in different hosts and environments, implying a differential gene regulation, we proposed a genomic analysis of XPOs to validate their annotation. The results showed the conservation of exportin family members and gene duplication events in S. mansoni. We performed quantitative RT-PCR, which revealed an upregulation of SmXPO1 in 24 h schistosomula (sixfold when compared with cercariae), and similar transcription levels were observed for SmXPO5 and SmXPOT in all the analyzed stages. These three XPO proteins have been identified for the first time in the protostome clade, which suggests a higher complexity in RNA transport in the parasite S. mansoni. Taken together, these results suggest that RNA transport by exportins might control cellular processes during cercariae, schistosomula, and adult worm development.


Asunto(s)
Proteínas del Helminto/metabolismo , Carioferinas/metabolismo , Schistosoma mansoni/genética , Animales , Evolución Biológica , Secuencia Conservada , Duplicación de Gen , Proteínas del Helminto/genética , Carioferinas/genética , Schistosoma mansoni/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA