Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Intervalo de año de publicación
1.
Foods ; 13(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39335814

RESUMEN

A common challenge in hydrogel-based delivery systems is the premature release of low molecular weight encapsulates through diffusion or swelling and reduced cell viability caused by the low pH in gastric conditions. A second biopolymer, such as chitosan, can be incorporated to overcome this. Chitosan is usually associated with colonic drug delivery systems. We intended to formulate chitosan-coated pectin beads for use in delaying premature release of the encapsulate under gastric conditions but allowing release through disintegration under intestinal conditions. The latter is of utmost importance in delivering most functional food ingredients. Therefore, this study investigated the impact of formulation and process conditions on the size, sphericity, and dissolution behavior of chitosan-coated hydrogel beads prepared by interfacial coacervation. The size and sphericity of the beads depend on the formulation and range from approximately 3 to 5 mm and 0.82 to 0.95, respectively. Process conditions during electro-dripping may be modulated to tailor bead size. Depending on the voltage, bead size ranged from 1.5 to 4 mm. Confocal laser scanning microscopy and scanning electron microscopy confirmed chitosan shell formation around the pectin bead. Chitosan-coated beads maintained their size and shape in simulated gastric fluid but experienced structural damage in simulated intestinal fluid. Therefore, they represent a novel delivery system for functional food ingredients.

2.
Int J Biol Macromol ; 269(Pt 1): 131974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692546

RESUMEN

Dental implant success is threatened by peri-implantitis, an inflammation leading to implant failure. Conventional treatments struggle with the intricate microbial and host factors involved. Antibacterial membranes, acting as barriers and delivering antimicrobials, may offer a promising solution. Thus, this study highlights the potential of developing antibacterial membranes of poly-3-hydroxybutyrate and silver nanoparticles (Ag Nps) to address peri-implantitis challenges, discussing design and efficacy against potential pathogens. Electrospun membranes composed of PHB microfibers and Ag Nps were synthesized in a blend of DMF/chloroform at three different concentrations. Various studies were conducted on the characterization and antimicrobial activity of the membranes. The synthesized Ag Nps ranged from 4 to 8 nm in size. Furthermore, Young's modulus decreased, reducing from 13.308 MPa in PHB membranes without Ag Nps to 0.983 MPa in PHB membranes containing higher concentrations of Ag Nps. This demonstrates that adding Ag Nps results in a less stiff membrane. An increase in elongation at break was noted with the rise in Ag Nps concentration, from 23.597 % in PHB membranes to 60.136 % in PHB membranes loaded with Ag Nps. The antibiotic and antibiofilm activity of the membranes were evaluated against Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Candida albicans. The results indicated that all PHB membranes containing Ag Nps exhibited potent antibacterial activity by inhibiting the growth of biofilms and planktonic bacteria. However, inhibition of C. albicans occurred only with the PHB-Ag Nps C membrane. These findings emphasize the versatility and potential of Ag Nps-incorporated membranes as a multifunctional approach for preventing and addressing microbial infections associated with peri-implantitis. The combination of antibacterial and antibiofilm properties in these membranes holds promise for improving the management and treatment of peri-implantitis-related complications.


Asunto(s)
Antibacterianos , Biopelículas , Hidroxibutiratos , Membranas Artificiales , Nanopartículas del Metal , Periimplantitis , Plata , Plata/química , Plata/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Periimplantitis/tratamiento farmacológico , Periimplantitis/microbiología , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Poliésteres/química , Pruebas de Sensibilidad Microbiana , Humanos , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Polihidroxibutiratos
3.
Polymers (Basel) ; 15(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139877

RESUMEN

The placement of a polymeric electrospun scaffold is among the most promising strategies to improve nerve regeneration after critical neurotmesis. It is of great interest to investigate the effect of these structures on Schwann cells (SCs), as these cells lead nerve regeneration and functional recovery. The aim of this study was to assess SC viability and morphology when cultured on polyhydroxybutyrate (PHB) electrospun scaffolds with varied microfiber thicknesses and pore sizes. Six electrospun scaffolds were obtained using different PHB solutions and electrospinning parameters. All the scaffolds were morphologically characterized in terms of fiber thickness, pore size, and overall appearance by analyzing their SEM images. SCs seeded onto the scaffolds were analyzed in terms of viability and morphology throughout the culture period through MTT assay and SEM imaging. The SCs were cultured on three scaffolds with homogeneous smooth fibers (fiber thicknesses: 2.4 µm, 3.1 µm, and 4.3 µm; pore sizes: 16.7 µm, 22.4 µm, and 27.8 µm). SC infiltration and adhesion resulted in the formation of a three-dimensional network composed of intertwined fibers and cells. The SCs attached to the scaffolds maintained their characteristic shape and size throughout the culture period. Bigger pores and thicker fibers resulted in higher SC viability.

4.
Pharmaceutics ; 15(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37765158

RESUMEN

Based on the qualities of Ulmo honey (Eucryphia cordifolia), a medical-grade honey (Ulmoplus®) has been developed. Relevant to this, the use of copper represents an emerging therapy for the treatment of wounds. Therefore, the aim of this study was to see how this medical-grade honey with copper nanoparticles (CuNPs) helped to heal infected or non-infected wounds. Twenty-four guinea pigs (Cavia porcellus) were divided into four groups for phase 1 (without and with infection, U + F1 and U + F2), and two groups for phase 2 (selected formulation, without and with infection, U + F2NI and U + F2I). Bacteriological and histopathological studies, collagen fibers content evaluation, and stereological analysis were performed. The selected formulation displayed the same antibacterial potency as Ulmoplus®, indicating that this medical-grade honey by itself can be used as an antibacterial agent. However, the evaluation of collagen content demonstrated a significant increase in fibroblast and type III collagen fibers for infected and uninfected groups, which correlated with the histopathological study. Therefore, it is correct to affirm that adding CuNPs to Ulmoplus® improved the maturation of collagen fibers. Finally, polymorphonuclear cells presented similar values between experimental groups, which would indicate that the formulation under study was able to regulate the inflammatory process despite their infectious condition.

5.
Phytochem Anal ; 34(8): 970-983, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37488746

RESUMEN

INTRODUCTION: Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE: The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY: Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS: Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS: These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.


Asunto(s)
Annona , Diabetes Mellitus Tipo 2 , Hipoglucemiantes/farmacología , Antioxidantes/análisis , Annona/química , Cromatografía en Capa Delgada/métodos , alfa-Glucosidasas , Extractos Vegetales/química , alfa-Amilasas
6.
Pharmaceutics ; 15(7)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37514098

RESUMEN

A novel co-encapsulation system called bicosomes (bicelles within liposomes) has been developed to overcome the limitations associated with the topical application of curcumin (cur) and α-tocopherol (α-toc). The physicochemical properties and biological activity in vitro of bicosome systems were evaluated. Bicelles were prepared with DPPC, DHPC, cur, and α-toc (cur/α-toc-bicelles). Liposomal vesicles loading cur/α-toc-bicelles were prepared with Lipoid P-100 and cholesterol-forming cur/α-toc-bicosomes. Three cur/α-toc-bicosomes were evaluated using different total lipid percentages (12, 16, and 20% w/v). The results indicated that formulations manage to solubilize cur and α-toc in homogeneous bicelles < 20 nm, while the bicosomes reaches 303-420 nm depending on the total lipid percentage in the systems. Bicosomes demonstrated high-encapsulation efficiency (EE) for cur (56-77%) and α-toc (51-65%). The loading capacity (LC) for both antioxidant compounds was 52-67%. In addition, cur/α-toc-bicosomes decreased the lipid oxidation by 52% and increased the antioxidant activity by 60% compared to unloaded bicosomes. The cell viability of these cur/α-toc-bicosomes was >85% in fibroblasts (3T3L1/CL-173™) and ≥65% in keratinocytes (Ha-CaT) and proved to be hematologically compatible. The cur/α-toc-bicelles and cur/α-toc-bicosomes inhibited the growth of C. albicans in a range between 33 and 76%. Our results propose bicosome systems as a novel carrier able to co-encapsulate, solubilize, protect, and improve the delivery performance of antioxidant molecules. The relevance of these findings is based on the synergistic antioxidant effect of its components, its biocompatibility, and its efficacy for dermal tissue treatment damaged by oxidative stress or by the presence of C. albicans. However, further studies are needed to assess the efficacy and safety of cur/α-toc bicosomes in vitro and in vivo.

7.
Pharmaceutics ; 15(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514125

RESUMEN

Peri-implantitis is a serious condition affecting dental implants that can lead to implant failure and loss of osteointegration if is not diagnosed and treated promptly. Therefore, the development of new materials and approaches to treat this condition is of great interest. In this study, we aimed to develop an electrospun scaffold composed of polycaprolactone (PCL) microfibers loaded with cholecalciferol (Col), which has been shown to promote bone tissue regeneration. The physical and chemical properties of the scaffold were characterized, and its ability to support the attachment and proliferation of MG-63 osteoblast-like cells was evaluated. Our results showed that the electrospun PCL-Col scaffold had a highly porous structure and good mechanical properties. The resulting scaffolds had an average fiber diameter of 2-9 µm and high elongation at break (near six-fold under dry conditions) and elasticity (Young modulus between 0.9 and 9 MPa under dry conditions). Furthermore, the Col-loaded scaffold was found to decrease cell proliferation when the Col content in the scaffolds increased. However, cytotoxicity analysis proved that the PCL scaffold on its own releases more lactate dehydrogenase into the medium than the scaffold containing Col at lower concentrations (PCL-Col A, PCL-Col B, and PCL-Col C). Additionally, the Col-loaded scaffold was shown to effectively promote the expression of alkaline phosphatase and additionally increase the calcium fixation in MG-63 cells. Our findings suggest that the electrospun membrane loaded with Col can potentially treat peri-implantitis by promoting bone formation. However, further studies are needed to assess the efficacy and safety of this membrane in vivo.

8.
Food Funct ; 13(21): 10870-10881, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36239179

RESUMEN

Encapsulation of food and feed ingredients is commonly applied to avoid the loss of functionality of bioactive food ingredients. Components that are encapsulated are usually sensitive to light, pH, oxygen or highly volatile. Also, encapsulation is also applied for ingredients that might influence taste. Many polymers from natural sources have been tested for encapsulation of foods. In the past few years, pectins have been proposed as emerging broadly applicable encapsulation materials. The reasons are that pectins are versatile and inexpensive, can be tailored to meet specific demands and provide health benefits. Emerging new insight into the chemical structure and related health benefits of pectins opens new avenues to use pectins in food and feed. To provide insight into their application potential, we review the current knowledge on the structural features of different pectins, their production and tailoring process for use in microencapsulation and gelation, and the impact of the pectin structure on health benefits and release properties in the gut, as well as processing technologies for pectin-based encapsulation systems with tailor-made functionalities. This is reviewed in view of application of pectins for microencapsulation of different sensitive food components. Although some critical factors such as tuning of controlled release of cargo in the intestine and the impact of the pectin production process on the molecular structure of pectin still need more study, current insight is that pectins provide many advantages for encapsulation of bioactive food and feed ingredients and are cost-effective.


Asunto(s)
Alimentos , Pectinas , Pectinas/química , Preparaciones de Acción Retardada , Estructura Molecular
9.
Biology (Basel) ; 11(5)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35625434

RESUMEN

In the last two decades, artificial scaffolds for nerve regeneration have been produced using a variety of polymers. Polyhydroxybutyrate (PHB) is a natural polyester that can be easily processed and offer several advantages; hence, the purpose of this review is to provide a better understanding of the efficacy of therapeutic approaches involving PHB scaffolds in promoting peripheral nerve regeneration following nerve dissection in animal models. A systematic literature review was performed following the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) criteria. The revised databases were: Pub-Med/MEDLINE, Web of Science, Science Direct, EMBASE, and SCOPUS. Sixteen studies were included in this review. Different animal models and nerves were studied. Extension of nerve gaps reconnected by PHB scaffolds and the time periods of analysis were varied. The additives included in the scaffolds, if any, were growth factors, neurotrophins, other biopolymers, and neural progenitor cells. The analysis of the quality of the studies revealed good quality in general, with some aspects that could be improved. The analysis of the risk of bias revealed several weaknesses in all studies. The use of PHB as a biomaterial to prepare tubular scaffolds for nerve regeneration was shown to be promising. The incorporation of additives appears to be a trend that improves nerve regeneration. One of the main weaknesses of the reviewed articles was the lack of standardized experimentation on animals. It is recommended to follow the currently available guidelines to improve the design, avoid the risk of bias, maximize the quality of studies, and enhance translationality.

10.
Pharmaceutics ; 13(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959336

RESUMEN

Burns are a major threat to public health and the economy due to their costly and laborious treatment and high susceptibility to infection. Efforts have been made recently to investigate natural bioactive compounds with potential use in wound healing. The importance lies in the capacities that these compounds could possess both in infection control by common and resistant microorganisms, as well as in the regeneration of the affected tissues, having in both cases low adverse effects. However, some bioactive molecules are chemically unstable, poorly soluble, and susceptible to oxidative degradation or have low bioavailability. Therefore, developing new technologies for an efficient treatment of wound healing poses a real challenge. In this context, electrospun nanofibers have gained increasing research interest because bioactive molecules can be easily loaded within the nanofiber, resulting in optimal burst control and enhanced drug stability. Additionally, the nanofibers can mimic the extracellular collagen matrix, providing a suitable highly porous structural support for growing cells that facilitate and accelerate skin burns healing. This review gives an overview of the current state of electrospun fibers loaded with natural bioactive compounds as a biomedical system for skin burn treatment.

11.
Microorganisms ; 9(6)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204835

RESUMEN

Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via ß-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.

12.
Int J Biol Macromol ; 183: 772-780, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33965478

RESUMEN

The use of antioxidants such as curcumin (Cur) or quercetin (Que) in biomedical and biotechnological applications has been studied owing to their capability to prevent oxidative stress and inhibit free radicals. Using polyhydroxybutyrate (PHB) electrospun fibers is presented as a proper option to encapsulate curcumin and quercetin due to its biocompatibility and biodegradability characteristics. Electrospun fibers were obtained dissolving commercial PHB in chloroform:N,N-dimethylformamide (DMF) (4:1) at 7% m/V, and adding two different concentrations of antioxidant (Cur, and Que) 1%m/m, and 7% m/m. These polymeric solutions were electrospun at different conditions and the obtained fibers were characterized by scanning electron microscopy (SEM), thermogravimetric (TGA) analysis, and Fourier transform infrared spectroscopy (FT-IR). The curcumin and quercetin releases into phosphate buffer saline (PBS) at pH 7.4 were obtained in vitro and measured by spectrophotometry. Antioxidant activities were measured by spectrophotometry in a microplate reader using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Fibers obtained with different formulations presented a chemical composition in accordance with PHB according to FTIR spectra, the diameters fluctuate between 0.761 ± 0.123 and 1.803 ± 0.557 µm, with qualities over 0.95 according to their morphology, and the melting temperature resulted near 178 °C according to the bibliography. The crystallinity of fibers decreases while curcumin or quercetin concentration increases for the studied interval, indeed, quercetin showed a higher impact on the relative crystallinity of fibers. Antioxidant activity of active compounds is maintained after encapsulation in PHB electrospun fibers, and quercetin resulted in near four times antioxidant activity compared to curcumin according to DPPH analysis.


Asunto(s)
Antioxidantes/síntesis química , Curcumina/síntesis química , Hidroxibutiratos/química , Quercetina/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Cápsulas , Curcumina/química , Curcumina/farmacología , Composición de Medicamentos , Microscopía Electrónica de Rastreo , Estrés Oxidativo/efectos de los fármacos , Quercetina/química , Quercetina/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos
13.
Mater Sci Eng C Mater Biol Appl ; 119: 111602, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321646

RESUMEN

This work aimed to implement an electrospinning protocol that allows simultaneous production of micro- and nanofibers in a single scaffold to mimic the extracellular matrix (ECM) combining biodegradable polymers and proteins, and to evaluate its capability to manage diabetic wounds. Poly-3-hydroxybutyrate (PHB) and gelatin (Ge) were chosen to prepare micro- and nanofibers, respectively. Electrospinning conditions were optimized testing various polymer concentrations, voltages, and flow rates. One-step dual-size fibers were obtained from 8%w/v PHB in chloroform (microfibers, 1.25 ± 0.17 µm) and 30%w/v gelatin in acetic acid (75%w/v) (nanofibers, 0.20 ± 0.04 µm), at 0.5 mL/h and 25 kV. A chemical characterization, swelling, hydrophilicity of scaffolds made of PHB-microfibers, Ge-nanofibers and their combination (Ge-PHB) were evaluated before and after crosslinking with genipin. All scaffolds showed excellent fibroblasts viability and attachment after incubation for 1, 3, and 7 days, and low levels of hemolysis. In vivo wound healing was evaluated in diabetic rats for 21 days. Ge-containing scaffolds promoted faster healing. The wounds treated with the Ge-PHB scaffolds proved to be in a late proliferative stage showing higher content of hair follicles and sweat glands and lower content in fibroblast compared with the control wounds.


Asunto(s)
Diabetes Mellitus Experimental , Nanofibras , Animales , Gelatina , Hidroxibutiratos , Poliésteres , Prohibitinas , Ratas , Ingeniería de Tejidos , Andamios del Tejido
14.
Int J Biol Macromol ; 152: 11-20, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32057856

RESUMEN

Poly-3-hydroxybutyrate (PHB) is a biocompatible polymer produced by a wide variety of bacteria from different carbon sources. However, the carbon source effects on PHB properties are largely unknown. This study aimed to characterize PHB produced by Paraburkholderia xenovorans LB400 supplied with glucose (PHBg), mannitol (PHBm), or xylose (PHBx) as sole carbon sources and to evaluate their potential application as the main component of scaffolds obtained by electrospinning. The PHBs produced by strain LB400 had different molecular weights; the largest value corresponded to PHBm. The XRD-spectra revealed that PHB produced by strain LB400 from the three carbon sources are less crystalline than the commercially available polymer (PHBc). Moreover, the electrospinning process decreases even further their degree of crystallinity, which could lead to an improvement in the mechanical properties of the polymers. Relevantly, PHBx-microfibers exhibited mechanical characteristics similar to those of human skin. None of the scaffolds made of PHBs from strain LB400 grown in different carbon sources showed adverse effects on fibroblast cell growth. Thus, modifying the sugar used as the carbon source may be useful to tune the structural properties of PHB and its performance as a component of electrospun scaffolds, which may better fit specific biomedical applications.


Asunto(s)
Burkholderiaceae/metabolismo , Carbono/metabolismo , Electricidad , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Animales , Biotecnología , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Fenómenos Mecánicos , Ratones , Poliésteres/química , Poliésteres/farmacología , Prohibitinas , Temperatura
15.
Nanomaterials (Basel) ; 10(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968539

RESUMEN

Antioxidants can be encapsulated to enhance their solubility or bioavailability or to protect them from external factors. Electrospinning has proven to be an excellent option for applications in nanotechnology, as electrospun nanofibers can provide the necessary environment for antioxidant encapsulation. Forty-nine papers related to antioxidants loaded onto electrospun nanofibers were categorized and reviewed to identify applications and new trends. Medical and food fields were commonly proposed for the newly obtained composites. Among the polymers used as a matrix for the electrospinning process, synthetic poly (lactic acid) and polycaprolactone were the most widely used. In addition, natural compounds and extracts were identified as antioxidants that help to inhibit free radical and oxidative damage in tissues and foods. The most recurrent active compounds used were tannic acid (polyphenol), quercetin (flavonoid), curcumin (polyphenol), and vitamin B6 (pyridoxine). The incorporation of active compounds in nanofibers often improves their bioavailability, giving them increased stability, changing the mechanical properties of polymers, enhancing nanofiber biocompatibility, and offering novel properties for the required field. Although most of the polymers used were synthetic, natural polymers such as silk fibroin, chitosan, cellulose, pullulan, polyhydroxybutyrate, and zein have proven to be proper matrices for this purpose.

16.
Int J Biol Macromol ; 124: 102-110, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445089

RESUMEN

Polyhydroxyalkanoates (PHA) are natural polyesters produced by microorganisms under carbon source excess and limiting nutrient conditions. However, these biopolymers possess low mechanical and thermal properties, decreasing their potential applications in the medical field. Electrospinning is a technique that forms fibers from different polymers. PHA electrospun fibers improve the mechanical properties and decrease the crystallinity of PHA, including poly-3-hydroxybutyrate and its copolymers, which is attributed to the metastable structure (ß-form) formation. Therefore, the mechanical properties of fibers are intrinsically related to their plane orientation. Aligned fibers present better mechanical properties than randomly oriented fibers. However, randomly oriented fibers promote cell-fiber interaction and cell infiltration. Fibers produced with PHA blended with other polymers have shown improved mechanical and biological properties. Gelatin, zein and cellulose acetate are the main natural polymers that have been blended with PHA for electrospun scaffolds. For scaffold production by coaxial electrospinning, gelatin has been used as a shell and PHA as the core. PHA have been combined with different synthetic polymers and plasticizers resulting in an increase in the PHA miscibility. Therefore, the use of electrospinning in the development of PHA-based scaffolds seems to be an attractive method to change the intrinsic polymer features, increasing and enhancing PHA applications in tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Biopolímeros/química , Polihidroxialcanoatos/química , Andamios del Tejido/química , Materiales Biocompatibles/síntesis química , Celulosa/química , Gelatina/química , Humanos , Hidroxibutiratos/química , Poliésteres/química , Polihidroxialcanoatos/síntesis química , Ingeniería de Tejidos , Zeína/química
17.
Proc Biol Sci ; 285(1885)2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158306

RESUMEN

Maize evolution under domestication is a process that continues today. Case studies suggest that Mexican smallholder family farmers, known as campesinos, contribute importantly to this, but their significance has not been explicitly quantified and analysed as a whole. Here, we examine the evolutionary and food security implications of the scale and scope under which campesinos produce maize. We gathered official municipal-level data on maize production under rainfed conditions and identified campesino agriculture as occurring in municipalities with average yields of less than or equal to 3 t ha-1 Environmental conditions vary widely in those municipalities and are associated with a great diversity of maize races, representing 85.3% of native maize samples collected in the country. We estimate that in those municipalities, around 1.38 × 1011 genetically different individual plants are subjected to evolution under domestication each season. This implies that 5.24 × 108 mother plants contribute to the next generation with their standing genetic diversity and rare alleles. Such a large breeding population size also increases the total number of adaptive mutations that may appear and be selected for. We also estimate that campesino agriculture could potentially feed around 54.7 million people in Mexico. These analyses provide insights about the contributions of smallholder agriculture around the world.


Asunto(s)
Domesticación , Abastecimiento de Alimentos/estadística & datos numéricos , Zea mays , Agricultores , México , Fitomejoramiento , Zea mays/genética
18.
Eur J Pharm Sci ; 119: 49-61, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29630938

RESUMEN

Coaxial electrospinning was used to develop gallic acid (GA) loaded poly(ethylene oxide)/zein nanofibers in order to improve its chemopreventive action on human gallbladder cancer cells. Using a Plackett-Burman design, the effects of poly(ethylene oxide) and zein concentration and applied voltage on the diameter and morphology index of nanofibers were investigated. Coaxial nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). GA loading efficiency as high as 77% was obtained under optimal process conditions. The coaxial nanofibers controlled GA release in acid and neutral pH medium. Cytotoxicity and reactive oxygen species (ROS) production on gallbladder cancer cell lines GB-d1 and NOZ in the presence of GA-nanofibers were assessed. GA-nanofibers triggered an increase in the cellular cytotoxicity compared with free GA on GB-d1 and NOZ cells. Statistically significant differences were found in ROS levels of GA-nanofibers compared with free GA on NOZ cells. Differently, ROS production on GB-d1 cell line was similar. Based on these results, the coaxial nanofibers obtained in this study under optimized operational conditions offer an alternative for the development of a GA release system with improved chemopreventive action on gallbladder cancer cells.


Asunto(s)
Anticarcinógenos/administración & dosificación , Antineoplásicos/administración & dosificación , Ácido Gálico/administración & dosificación , Nanofibras/administración & dosificación , Polietilenglicoles/administración & dosificación , Zeína/administración & dosificación , Anticarcinógenos/química , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioprevención , Liberación de Fármacos , Neoplasias de la Vesícula Biliar/prevención & control , Ácido Gálico/química , Humanos , Concentración de Iones de Hidrógeno , Nanofibras/química , Polietilenglicoles/química , Especies Reactivas de Oxígeno/metabolismo , Zeína/química
19.
Int J Biol Macromol ; 106: 692-697, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28823514

RESUMEN

Nano- and microfibers obtained by electrospinning have attracted great attention due to its versatility and potential for applications in diverse technological fields. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms such as the bacterium Burkholderia xenovorans LB400. In particular, LB400 cells are capable to synthesize poly(3-hydroxybutyrate) (PHB) from glucose. The aim of this study was to produce and characterize electrospun fibers obtained from bacterial PHBs. Bacterial strain LB400 was grown in M9 minimal medium using xylose and mannitol (10gL-1) as the sole carbon sources and NH4Cl (1gL-1) as the sole nitrogen source. Biopolymer-based films obtained were used to produce fibers by electrospinning. Diameter and morphology of the microfibers were analyzed by scanning electron microscopy (SEM) and their thermogravimetric properties were investigated. Bead-free fibers using both PHBs were obtained with diameters of less than 3µm. The surface morphology of the microfibers based on PHBs obtained from both carbon sources was different, even though their thermogravimetric properties are similar. The results indicate that the carbon source may determine the fiber structure and properties. Further studies should be performed to analyze the physicochemical and mechanical properties of these PHB-based microfibers, which may open up novel applications.


Asunto(s)
Burkholderia/metabolismo , Glucosa/metabolismo , Hidroxibutiratos/metabolismo , Fibras Minerales/análisis , Poliésteres/metabolismo , Cloruro de Amonio/metabolismo , Cloruro de Amonio/farmacología , Burkholderia/efectos de los fármacos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Técnicas Electroquímicas , Fermentación , Manitol/metabolismo , Manitol/farmacología , Xilosa/metabolismo , Xilosa/farmacología
20.
Food Res Int ; 94: 20-28, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28290363

RESUMEN

Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Benceno/farmacología , Miel/análisis , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Antibacterianos/análisis , Antineoplásicos/análisis , Apiterapia , Benceno/análisis , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Chile , Cromatografía de Gases y Espectrometría de Masas , Humanos , L-Lactato Deshidrogenasa/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA