Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 28(22): 3070-3081, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904211

RESUMEN

Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Inmunofilinas/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inmunofilinas/genética , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal
2.
Nucleic Acids Res ; 44(16): 7555-67, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27141964

RESUMEN

Adaptation to hypoxia depends on a conserved α/ß heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Sitios Genéticos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mamíferos , Modelos Biológicos , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Tráquea/crecimiento & desarrollo , Transcripción Genética
3.
Fly (Austin) ; 8(3): 153-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482726

RESUMEN

In this Extra View we comment on our recent work on Sudestada1 (Sud1), a Drosophila 2-oxoglutarate (2OG)-dependent dioxygenase that belongs to the Ribosomal Oxygenase (ROX) subfamily. Sud1 is required for normal growth in Drosophila, and is conserved in yeast and mammals. We reported that Sud1 hydroxylates the ribosomal protein S23 (RPS23), and that its loss of function restricts growth and provokes activation of the unfolded protein response, apoptosis and autophagy. In this Extra View we speculate on the role that RPS23 hydroxylation might play in stop codon recognition and on the possible link between Sud1 loss-of-function and activation of the Unfolded Protein Response, Stress Granules formation and growth impairment.


Asunto(s)
Procesos de Crecimiento Celular , Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Regulación de la Expresión Génica , Prolil Hidroxilasas/metabolismo , Proteínas Ribosómicas/metabolismo , Animales , Hidroxilación
4.
Proc Natl Acad Sci U S A ; 111(11): 4025-30, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550463

RESUMEN

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Homeostasis/fisiología , Prolil Hidroxilasas/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Ribosómicas/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Autofagia/genética , Western Blotting , Pesos y Medidas Corporales , Cromatografía Liquida , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Cuerpo Adiposo/citología , Femenino , Técnicas de Silenciamiento del Gen , Hidroxilación , Prolil Hidroxilasas/genética , Procesamiento Proteico-Postraduccional/fisiología , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ribosómicas/genética , Espectrometría de Masas en Tándem , Respuesta de Proteína Desplegada/genética
5.
Mol Biol Cell ; 25(6): 916-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24430872

RESUMEN

Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Insulisina/genética , Transducción de Señal , Animales , Tamaño de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insulisina/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Neuropéptidos , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Alas de Animales/citología , Alas de Animales/metabolismo
6.
PLoS One ; 5(8): e12390, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20811646

RESUMEN

BACKGROUND: The Hypoxia Inducible Factor (HIF) mediates cellular adaptations to low oxygen. Prolyl-4-hydroxylases are oxygen sensors that hydroxylate the HIF alpha-subunit, promoting its proteasomal degradation in normoxia. Three HIF-prolyl hydroxylases, encoded by independent genes, PHD1, PHD2, and PHD3, occur in mammals. PHD2, the longest PHD isoform includes a MYND domain, whose biochemical function is unclear. PHD2 and PHD3 genes are induced in hypoxia to shut down HIF dependent transcription upon reoxygenation, while expression of PHD1 is oxygen-independent. The physiologic significance of the diversity of the PHD oxygen sensors is intriguing. METHODOLOGY AND PRINCIPAL FINDINGS: We have analyzed the Drosophila PHD locus, fatiga, which encodes 3 isoforms, FgaA, FgaB and FgaC that are originated through a combination of alternative initiation of transcription and alternative splicing. FgaA includes a MYND domain and is homologous to PHD2, while FgaB and FgaC are shorter isoforms most similar to PHD3. Through a combination of genetic experiments in vivo and molecular analyses in cell culture, we show that fgaB but not fgaA is induced in hypoxia, in a Sima-dependent manner, through a HIF-Responsive Element localized in the first intron of fgaA. The regulatory capacity of FgaB is stronger than that of FgaA, as complete reversion of fga loss-of-function phenotypes is observed upon transgenic expression of the former, and only partial rescue occurs after expression of the latter. CONCLUSIONS AND SIGNIFICANCE: Diversity of PHD isoforms is a conserved feature in evolution. As in mammals, there are hypoxia-inducible and non-inducible Drosophila PHDs, and a fly isoform including a MYND domain co-exists with isoforms lacking this domain. Our results suggest that the isoform devoid of a MYND domain has stronger regulatory capacity than that including this domain.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Empalme Alternativo , Animales , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica , Sitios Genéticos/genética , Humanos , Hipoxia/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Estadios del Ciclo de Vida/genética , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/genética , Estructura Terciaria de Proteína , ARN Mensajero/genética , Elementos de Respuesta/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA