Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806859

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Asunto(s)
Actinobacteria , Camellia sinensis , Rizosfera , Semillas , Microbiología del Suelo , Zea mays , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Semillas/microbiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Camellia sinensis/microbiología , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/genética , Camellia sinensis/metabolismo , India , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , ARN Ribosómico 16S/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo
2.
Mol Plant Microbe Interact ; 35(12): 1081-1095, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36000178

RESUMEN

Sheath blight of rice caused by necrotrophic plant pathogen Rhizoctonia solani is one of the most common fungal diseases of rice leading to significant yield loss. Among the defense responses exhibited by the host plants towards fungal infections, those functional within the apoplast contribute significantly. Here, we have studied apoplastic defense response of rice towards R. solani during sheath blight infection. The transcriptome of R. solani-infected rice plants was compared with that of uninfected rice, to identify the set of defense genes that undergo differential expression and code for proteins with a predicted N-terminal signal peptide. Significant changes in the stress-responsive, molecular signal perception, protein modification, and metabolic process pathways represented by a group of differentially expressed genes were observed. Our data also revealed two secreted protease inhibitors from rice that exhibit increased expression during R. solani infection and induce disease resistance when expressed in Nicotiana benthamiana. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Oryza , Oryza/microbiología , Transcriptoma , Resistencia a la Enfermedad/genética , Rhizoctonia/fisiología , Enfermedades de las Plantas/microbiología
3.
Sci Rep ; 10(1): 15536, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968101

RESUMEN

A total of 120 rhizobacteria were isolated from seven different tea estates of Darjeeling, West Bengal, India. Based on a functional screening of in vitro plant growth-promoting (PGP) activities, thirty potential rhizobacterial isolates were selected for in-planta evaluation of PGP activities in rice and maize crops. All the thirty rhizobacterial isolates were identified using partial 16S rRNA gene sequencing. Out of thirty rhizobacteria, sixteen (53.3%) isolates belong to genus Bacillus, five (16.6%) represent genus Staphylococcus, three (10%) represent genus Ochrobactrum, and one (3.3%) isolate each belongs to genera Pseudomonas, Lysinibacillus, Micrococcus, Leifsonia, Exiguobacterium, and Arthrobacter. Treatment of rice and maize seedlings with these thirty rhizobacterial isolates resulted in growth promotion. Besides, rhizobacterial treatment in rice triggered enzymatic [ascorbate peroxidase (APX), catalase (CAT), chitinase, and phenylalanine ammonia-lyase (PAL)], and non-enzymatic [proline and polyphenolics] antioxidative defense reactions indicating their possible role in the reduction of reactive oxygen species (ROS) burden and thereby priming of plants towards stress mitigation. To understand such a possibility, we tested the effect of rhizobacterial consortia on biotic stress tolerance of rice against necrotrophic fungi, Rhizoctonia solani AG1-IA. Our results indicated that the pretreatment with rhizobacterial consortia increased resistance of the rice plants towards the common foliar pathogen like R. solani AG1-IA. This study supports the idea of the application of plant growth-promoting rhizobacterial consortia in sustainable crop practice through the management of biotic stress under field conditions.


Asunto(s)
Antioxidantes/metabolismo , Camellia sinensis/microbiología , Raíces de Plantas/microbiología , Basidiomycota/genética , Basidiomycota/fisiología , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/inmunología , Camellia sinensis/metabolismo , Clorofila/metabolismo , India , Oryza/crecimiento & desarrollo , Oryza/microbiología , Prolina/metabolismo , ARN Ribosómico 16S/genética , Rhizoctonia/genética , Rhizoctonia/fisiología , Rizosfera , Plantones/crecimiento & desarrollo , Plantones/inmunología , Plantones/metabolismo , Plantones/microbiología , Microbiología del Suelo , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...