Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259051

RESUMEN

ObjectiveTo evaluate whether synthetic data derived from a national COVID-19 data set could be used for geospatial and temporal epidemic analyses. Materials and MethodsUsing an original data set (n=1,854,968 SARS-CoV-2 tests) and its synthetic derivative, we compared key indicators of COVID-19 community spread through analysis of aggregate and zip-code level epidemic curves, patient characteristics and outcomes, distribution of tests by zip code, and indicator counts stratified by month and zip code. Similarity between the data was statistically and qualitatively evaluated. ResultsIn general, synthetic data closely matched original data for epidemic curves, patient characteristics, and outcomes. Synthetic data suppressed labels of zip codes with few total tests (mean=2.9{+/-}2.4; max=16 tests; 66% reduction of unique zip codes). Epidemic curves and monthly indicator counts were similar between synthetic and original data in a random sample of the most tested (top 1%; n=171) and for all unsuppressed zip codes (n=5,819), respectively. In small sample sizes, synthetic data utility was notably decreased. DiscussionAnalyses on the population-level and of densely-tested zip codes (which contained most of the data) were similar between original and synthetically-derived data sets. Analyses of sparsely-tested populations were less similar and had more data suppression. ConclusionIn general, synthetic data were successfully used to analyze geospatial and temporal trends. Analyses using small sample sizes or populations were limited, in part due to purposeful data label suppression -an attribute disclosure countermeasure. Users should consider data fitness for use in these cases.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20218875

RESUMEN

Early identification of symptoms and comorbidities most predictive of COVID-19 is critical to identify infection, guide policies to effectively contain the pandemic, and improve health systems response. Here, we characterised socio-demographics and comorbidity in 3,316,107persons tested and 219,072 persons tested positive for SARS-CoV-2 since January 2020, and their key health outcomes in the month following the first positive test. Routine care data from primary care electronic health records (EHR) from Spain, hospital EHR from the United States (US), and claims data from South Korea and the US were used. The majority of study participants were women aged 18-65 years old. Positive/tested ratio varied greatly geographically (2.2:100 to 31.2:100) and over time (from 50:100 in February-April to 6.8:100 in May-June). Fever, cough and dyspnoea were the most common symptoms at presentation. Between 4%-38% required admission and 1-10.5% died within a month from their first positive test. Observed disparity in testing practices led to variable baseline characteristics and outcomes, both nationally (US) and internationally. Our findings highlight the importance of large scale characterization of COVID-19 international cohorts to inform planning and resource allocation including testing as countries face a second wave.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...