Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36964465

RESUMEN

Silver nanoparticles (AgNPs) have several uses. Many scientists are working on producing AgNPs from plant extracts for use as biomedicines against drug-resistant bacteria and malignant cell lines. In the current study, plant-based AgNPs were synthesized using Raphanus sativus L. (RS) leaf aqua extract. Different concentrations of AgNO3 were used to optimize the synthesis process of RS-AgNPs from the aqueous leaf extract. Energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscope (AFM), and UV-vis spectroscopy were used to analyze the generated materials. Furthermore, to evaluate the biological properties of the obtained materials, Bacillus subtilis (B. subtilis), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Candida albicans (C. albicans) pathogen strains were used for the minimum inhibitory concentration (MIC) assays. Subsequently, healthy cell lines (human dermal fibroblast (HDF)) and cancerous cell lines (glioma/U118, Ovarian/Skov-3, and colorectal adenocarcinoma/CaCo-2) were engaged to determine the cytotoxic effects of the synthesized NPs. The cytotoxic and anti-pathogenic potential of AgNPs synthesized by the proposed green approach was investigated. The results were encouraging compared to the standards and other controls. Plant-based AgNPs were found to be potential therapeutic agents against the human colon cancer cell (CaCo-2) and showed strong inhibitory activity on Candida albicans and Staphylococcus aureus growth. The RS-AgNPs generated have highly effective antimicrobial properties against pathogenic bacteria. Our findings also show that green RS-AgNPs are more cytotoxic against cancerous cell lines than normal cell lines. Synthesized nanoparticles with desirable morphology and ease of preparation are thought to be promising materials for antimicrobial, cytotoxic, and catalytic applications.

2.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985400

RESUMEN

The current work's main objective was to determine the chemical composition of Amygdalus communis (AC) leaf extract and examine the antibacterial and cytotoxic properties of biosynthesized gold nanoparticles (AuNPs). The chemical composition of AC leaf extract was determined using LC-ESI/MS/MS to detect compounds that may be responsible for the reducing, stabilizing, and capping steps in the synthesis of nanoparticles and their biological activities. The AC-AuNPs were spherical, with a particle size lower than 100 nm and a face-centered cubic structure. The EDX spectrum confirmed the formation of AuNPs and a negative zeta potential value (-27.7 mV) suggested their physicochemical stability. The in vitro cytotoxic efficacy of the AC-AuNPs against colorectal adenocarcinoma (Caco-2), glioma (U118), and ovarian (Skov-3) cancer cell lines and human dermal fibroblasts (HDFs) was evaluated by MTT assay. CaCo-2 cell proliferation was effectively inhibited by the AC-AuNPs at concentrations between 25 and 100 g mL-1. The AC-AuNPs exerted preeminent antimicrobial activity against Bacillus subtilis with an MIC of 0.02 µg/mL, whilst good activity was shown against Staphylococcus aureus bacteria and Candida albicans yeast with an MIC of 0.12 µg/mL. Ultimately, the results support the high antibacterial and anticancer potential of biosynthesized AuNPs from AC leaf extract.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Nanopartículas del Metal , Prunus dulcis , Humanos , Oro/farmacología , Oro/química , Células CACO-2 , Espectrometría de Masas en Tándem , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tecnología Química Verde
3.
Front Bioeng Biotechnol ; 10: 855136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330628

RESUMEN

Using biological materials to synthesize metallic nanoparticles has become a frequently preferred method by researchers. This synthesis method is both fast and inexpensive. In this study, an aqueous extract obtained from chickpea (Cicer arietinum L.) (CA) leaves was used in order to synthesize silver nanoparticles (AgNPs). For specification of the synthesized AgNPs, UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray (EDX), and zeta potential (ZP) analyses data were used. Biologically synthesized AgNPs demonstrated a maximum surface plasmon resonance of 417.47 nm after 3 h. With the powder XRD model, the mean crystallite dimension of nanoparticles was determined as 12.17 mm with a cubic structure. According to the TEM results, the dimensions of the obtained silver nanoparticles were found to be 6.11-9.66 nm. The ZP of the electric charge on the surface of AgNPs was measured as -19.6 mV. The inhibition effect of AgNPs on food pathogen strains and yeast was determined with the minimum inhibition concentration (MIC) method. AgNPs demonstrated highly effective inhibition at low concentrations especially against the growth of B. subtilis (0.0625) and S. aureus (0.125) strains. The cytotoxic effects of silver nanoparticles on cancerous cell lines (CaCo-2, U118, Sk-ov-3) and healthy cell lines (HDF) were revealed. Despite the increase of AgNPs used against cancerous and healthy cell lines, no significant decrease in the percentage of viability was detected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...