Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Heart Fail ; 2(6): 633-42, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19919989

RESUMEN

BACKGROUND: Previous studies suggest that transforming growth factor-beta provokes cardiac hypertrophy and myocardial fibrosis; however, it is unclear whether the deleterious effects of transforming growth factor-beta signaling are conveyed through SMAD-dependent or SMAD-independent signaling pathways. METHODS AND RESULTS: To determine the contribution of SMAD-dependent signaling to cardiac remodeling, we performed transaortic constriction in SMAD3 null (SMAD3(-/-)) and littermate control mice (age, 10 to 12 weeks). Cumulative survival 20 days after transaortic constriction was significantly less in the SMAD3(-/-) mice when compared with littermate controls (43.6% versus 90.9%, P<0.01). Transaortic constriction resulted in a significant increase in cardiac hypertrophy in the SMAD3(-/-) mice, denoted by an increase in the heart weight to tibial length ratio and increased myocyte cross-sectional area. Loss of SMAD3 signaling also resulted in a significant 60% decrease in myocardial fibrosis (P<0.05). A microRNA microarray showed that 55 microRNAs were differentially expressed in littermate and SMAD3(-/-) mice and that 10 of these microRNAs were predicted to bind to genes that regulate the extracellular matrix. Of these 10 candidate microRNAs, both miR-25 and miR-29a were sufficient to decrease collagen gene expression when transfected into isolated cardiac fibroblasts in vitro. CONCLUSIONS: The results suggest that SMAD3 signaling plays dual roles in the heart: one beneficial role by delimiting hypertrophic growth and the other deleterious by modulating myocardial fibrosis, possibly through a pathway that entails accumulation of microRNAs that decrease collagen gene expression.


Asunto(s)
Cardiomegalia/prevención & control , Hemodinámica , Hipertensión/metabolismo , Miocardio/metabolismo , Proteína smad3/metabolismo , Remodelación Ventricular , Adaptación Fisiológica , Animales , Aorta/cirugía , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Células Cultivadas , Colágeno/genética , Constricción , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Fibroblastos/metabolismo , Fibrosis , Perfilación de la Expresión Génica/métodos , Hipertensión/complicaciones , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Inflamación/etiología , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Proteína smad3/deficiencia , Proteína smad3/genética , Factores de Tiempo , Transfección , Remodelación Ventricular/genética
2.
Free Radic Biol Med ; 40(12): 2223-31, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16785036

RESUMEN

Ischemia and reperfusion (I/R) are characterized by oxidative stress as well as changes in the antioxidant enzymes of the heart. However, little is known about the transcriptional regulation of myocardial antioxidant enzymes in repetitive I/R and hibernating myocardium. In a mouse model of ischemic cardiomyopathy induced by repetitive I/R, we postulated that induction of antioxidant gene expression was dependent on reactive oxygen species (ROS). Repetitive closed-chest I/R (15 min) was performed daily in C57/BL6 mice and in mice overexpressing extracellular superoxide dismutase (EC-SOD). Antioxidant enzyme expression was measured at 3, 5, 7, and 28 days of repetitive I/R as well as 15 and 30 days after discontinuation of I/R. In order to determine whether ROS directly modulates antioxidant gene expression, transcript levels were measured in cardiomyocytes exposed to hydrogen peroxide. Repetitive I/R caused an early and sustained increase in glutathione peroxidase (GPX) transcript levels, while heme oxygenase-1 (HO-1) expression increased only after 7 days of repetitive I/R. Overexpression of EC-SOD prevented the upregulation of GPX and HO-1 transcript levels by repetitive I/R, suggesting that both genes are regulated by ROS. However, while HO-1 transcript levels increased in cardiomyocytes exposed to hydrogen peroxide, oxidative stress failed to induce the expression of GPX implying that ROS regulates GPX transcript levels only indirectly in repetitive I/R. In conclusion, repetitive I/R was associated with an early upregulation of GPX expression as well as a delayed increase of HO-1 transcript levels in the heart. The induction of both antioxidant genes was dependent on ROS, suggesting that alterations in redox balance mediate not only tissue injury but also components of "programmed cell survival" in hibernating myocardium.


Asunto(s)
Antioxidantes/metabolismo , Regulación Enzimológica de la Expresión Génica , Daño por Reperfusión Miocárdica/genética , Especies Reactivas de Oxígeno/metabolismo , Animales , Catalasa/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glutatión Peroxidasa/genética , Hemo-Oxigenasa 1/genética , Ratones , Ratones Endogámicos C57BL , Reperfusión Miocárdica , Daño por Reperfusión Miocárdica/enzimología , Estrés Oxidativo/genética , Carbonilación Proteica , Superóxido Dismutasa/genética , Transcripción Genética , Regulación hacia Arriba
3.
Mol Cell Biochem ; 278(1-2): 71-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16180091

RESUMEN

Acute hypobaric hypoxia induces a transient reactivation of the fetal-metabolic gene program in the rat heart. Although chronic hypobaric hypoxia causes alterations in metabolism and cardiac function, little is known about the transcriptional profile associated with acclimatization to chronic hypoxia. Because in chronic hypoxia only the right ventricle is exposed to pressure overload (pulmonary hypertension), we hypothesized that chronic hypobaric hypoxia induces a differential transcriptional profile in the right and left ventricle. Male Wistar rats were exposed to a hypobaric environment (11% O2) for 4, 10, and 12 weeks. Right and left ventricular tissue was isolated for histology and candidate gene expression. Chronic hypobaric hypoxia induced right ventricular hypertrophy without fibrosis. In the right ventricle, changes in metabolic gene expression suggested a downregulation of fatty acid metabolism and an increase in glucose metabolism, while left ventricular metabolic gene expression suggested restoration of fatty acid metabolism. While myosin heavy chain isoform transcript levels in the right ventricle indicated a progressive reactivation of the fetal iso-gene pattern, there was normalization of myosin iso-gene expression in the left ventricle. Similarly, sarcoendoplasmic reticulum ATPase 2a (SERCA2a) transcript levels in the right ventricle decreased by 12 weeks of chronic hypoxia exposure, whereas, left ventricular SERCA2a expression was unchanged. In conclusion, acclimatization to chronic hypobaric hypoxia induced a differential transcriptional response between the right and left ventricle. We speculate that reactivation of the fetal-metabolic program in the right ventricle is adaptive to pressure overload.


Asunto(s)
Aclimatación/fisiología , Ventrículos Cardíacos/metabolismo , Hipoxia/genética , Transcripción Genética/fisiología , Aclimatación/genética , Presión del Aire , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Lípidos/genética , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo
4.
Circulation ; 112(3): 407-15, 2005 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16009788

RESUMEN

BACKGROUND: The peroxisome proliferators-activated receptor-alpha (PPARalpha), a transcription factor that modulates fatty acid metabolism, regulates substrate preference in the heart. Although in acute ischemia there is a switch in substrate preference from fatty acids to glucose, metabolic gene expression in repetitive ischemia is not well described. In a mouse model of ischemic cardiomyopathy induced by repetitive ischemia/reperfusion (I/R), we postulated that downregulation of PPARalpha is regulated by reactive oxygen species and is necessary for maintaining contractile function in the heart. METHODS AND RESULTS: Repetitive closed-chest I/R (15 minutes) was performed daily in C57/BL6 mice, mice overexpressing extracellular superoxide dismutase, and mice treated with the PPARalpha agonist-WY-14,643. Echocardiography, histology, and candidate gene expression were measured at 3, 5, 7, and 28 days of repetitive I/R and 15 and 30 days after discontinuation of I/R. Repetitive I/R was associated with a downregulation of PPARalpha-regulated genes and both myosin heavy chain isoform transcript levels, which was reversible on discontinuation of I/R. Overexpression of EC-SOD prevented the downregulation of PPARalpha-regulated genes and myosin iso-genes by repetitive I/R. Furthermore, reactivation of PPARalpha in mice exposed to repetitive I/R worsened contractile function, induced microinfarctions, and increased intramyocardial triglyceride deposition, features suggestive of cardiac lipotoxicity. CONCLUSIONS: Metabolic and myosin isoform gene expression in repetitive I/R is mediated by reactive oxygen species. Furthermore, we suggest that downregulation of PPARalpha in repetitive I/R is an adaptive mechanism that is able to prevent lipotoxicity in the ischemic myocardium.


Asunto(s)
Regulación de la Expresión Génica , Corazón/efectos de los fármacos , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , PPAR alfa/genética , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/toxicidad , Animales , Regulación hacia Abajo , Ácidos Grasos/metabolismo , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Reperfusión Miocárdica , Cadenas Pesadas de Miosina/genética , Superóxido Dismutasa/fisiología , Triglicéridos/metabolismo
5.
Am J Physiol Endocrinol Metab ; 289(2): E328-36, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15797988

RESUMEN

It is suggested that insulin resistance and metabolic maladaptation of the heart are causes of contractile dysfunction. We tested the hypothesis whether systemic PPARgamma activation, by changing the metabolic profile in a model of insulin resistance and type 2 diabetes (the ZDF rat) in vivo, improves contractile function of the heart in vitro. Male Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats, at 53-56 days of age, were treated with either GI-262570 (a nonthiazolidinedione PPARgamma agonist; A) or vehicle (V) for 1 wk. Agonist treatment resulted in correction of hyperglycemia and dyslipidemia, as well as in reduced hyperinsulinemia. The accumulation of triacylglycerols in the myocardium, characteristic of the ZDF rat, disappeared with treatment. Cardiac power and rates of glucose oxidation in the isolated working heart were significantly reduced in ZDF-V rats, but both parameters increased to nondiabetic levels with agonist treatment. In ZDF-V hearts, transcript levels of PPARalpha-regulated genes and of myosin heavy chain-beta were upregulated, whereas GLUT4 was downregulated compared with ZL. Agonist treatment of ZDF rats reduced PPARalpha-regulated genes and increased transcripts of GLUT4 and GLUT1. In conclusion, by changing the metabolic profile, reducing myocardial lipid accumulation, and promoting the downregulation of PPARalpha-regulated genes, PPARgamma activation leads to an increased capacity of the myocardium to oxidize glucose and to a tighter coupling of oxidative metabolism and contraction in the setting of insulin resistance and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Contracción Miocárdica/fisiología , Miocardio/metabolismo , PPAR gamma/metabolismo , Adaptación Fisiológica , Animales , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Técnicas In Vitro , Resistencia a la Insulina/fisiología , Masculino , Contracción Miocárdica/efectos de los fármacos , Oxazoles/farmacología , PPAR gamma/agonistas , Ratas , Ratas Endogámicas , Ratas Zucker , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología , Triglicéridos/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacología
6.
FASEB J ; 18(14): 1692-700, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15522914

RESUMEN

In animal models of lipotoxicity, accumulation of triglycerides within cardiomyocytes is associated with contractile dysfunction. However, whether intramyocardial lipid deposition is a feature of human heart failure remains to be established. We hypothesized that intramyocardial lipid accumulation is a common feature of non-ischemic heart failure and is associated with changes in gene expression similar to those found in an animal model of lipotoxicity. Intramyocardial lipid staining with oil red O and gene expression analysis was performed on heart tissue from 27 patients (9 female) with non-ischemic heart failure. We determined intramyocardial lipid, gene expression, and contractile function in hearts from 6 Zucker diabetic fatty (ZDF) and 6 Zucker lean (ZL) rats. Intramyocardial lipid overload was present in 30% of non-ischemic failing hearts. The highest levels of lipid staining were observed in patients with diabetes and obesity (BMI>30). Intramyocardial lipid deposition was associated with an up-regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) -regulated genes, myosin heavy chain beta (MHC-beta), and tumor necrosis factor alpha (TNF-alpha). Intramyocardial lipid overload in the hearts of ZDF rats was associated with contractile dysfunction and changes in gene expression similar to changes found in failing human hearts with lipid overload. Our findings identify a subgroup of patients with heart failure and severe metabolic dysregulation characterized by intramyocardial triglyceride overload and changes in gene expression that are associated with contractile dysfunction.


Asunto(s)
Gasto Cardíaco Bajo/metabolismo , Miocardio/metabolismo , Triglicéridos/metabolismo , Adulto , Anciano , Animales , Gasto Cardíaco Bajo/complicaciones , Gasto Cardíaco Bajo/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Miosinas/biosíntesis , Miosinas/genética , Obesidad/complicaciones , Ratas , Ratas Zucker , Sarcómeros/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
7.
Am J Physiol Heart Circ Physiol ; 286(3): H1185-92, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14630626

RESUMEN

Hypobaric hypoxia induces right ventricular hypertrophy. The relative contribution of pulmonary hypertension, decreased arterial oxygen, and neuroendocrine stimulation to the transcriptional profile of hypoxia-induced right ventricular hypertrophy is unknown. Whereas both ventricles are exposed to hypoxia and neuroendocrine stimulation, only the right ventricle is exposed to increased load. We postulated that right ventricular hypertrophy would reactivate the fetal gene transcriptional profile in response to increased load. We measured the expression of candidate genes in the right ventricle of rats exposed to hypobaric hypoxia (11% O(2)) and compared the results with the left ventricle. Hypoxia induced right ventricular hypertrophy without fibrosis. In the right ventricle only, atrial natriuretic factor transcript levels progressively increased starting at day 7. Metabolic genes were differentially regulated, suggesting a substrate switch from fatty acids to glucose during early hypoxia and a switch back to fatty acids by day 14. There was also a switch in myosin isogene expression and a downregulation of sarcoplasmic/endoplasmic ATPase 2a during early hypoxia, whereas later, both myosin isoforms and SERCA2a were upregulated. When the right and left ventricle were compared, the transcript levels of all genes, except for myosin isoforms and pyruvate dehydrogenase kinase-4, differed dramatically suggesting that all these genes are regulated by load. Our findings demonstrate that hypoxia-induced right ventricular hypertrophy transiently reactivates the fetal gene program. Furthermore, myosin iso-gene and pyruvate dehydrogenase kinase-4 expression is not affected by load, suggesting that either hypoxia itself or neuroendocrine stimulation is the primary regulator of these genes.


Asunto(s)
Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Proteínas Musculares , Transcripción Genética/fisiología , Adaptación Fisiológica/fisiología , Animales , Factor Natriurético Atrial/genética , Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica/fisiología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 4 , Masculino , Proteínas de Transporte de Monosacáridos/genética , Cadenas Pesadas de Miosina/genética , Proteínas Quinasas/genética , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Sarcómeros/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...