Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol (Mosk) ; 56(2): 259-274, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35403619

RESUMEN

About 20 years ago, large RNA-protein complexes called paraspeckles were discovered in cell nuclei. The main components of these complexes are SFPQ and NONO proteins and the long noncoding RNA NEAT1. Later, these proteins were found free in the nucleus and even in the cytoplasm. The functions of NEAT1 and paraspeckle proteins are quite diverse including retention of RNAs subjected to multiple editing of adenosine to inosine in the nucleus, response to DNA damage, transcription regulation, control of mRNA stability, regulation of splicing, and participation in the cell response to viral infection. Thus, there are numerous, albeit contradictory, data on the involvement of NEAT1, SFPQ, and NONO in the HIV-1 replicative cycle at its various stages. Here, we tried to briefly review the main cellular functions of NEAT1 RNA and SFPQ and NONO proteins. The goal of this review was also to summarize and, if possible, systematize the existing data on their role in the HIV-1 life cycle.


Asunto(s)
VIH-1 , ARN Largo no Codificante , Animales , Núcleo Celular/metabolismo , VIH-1/genética , VIH-1/metabolismo , Estadios del Ciclo de Vida , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo
2.
Biomed Khim ; 62(6): 725-728, 2016 Nov.
Artículo en Ruso | MEDLINE | ID: mdl-28026819

RESUMEN

Human immunodeficiency virus first type (HIV-1) is a main cause of one of the most dangerous diseases, AIDS. The search for new inhibitors of the virus still remains an urgent task. One approach to suppress the HIV infection is to use a double-acting inhibitors, i.e. inhibitors directed to two stages of the viral life cycle. The catalytic domain of HIV-1 integrase has a similar spatial organization with ribonuclease (RNase H) domain of HIV-1 reverse transcriptase, and approach aimed to create HIV-1 integrase and RNase H double-acting is very promising. In this work we synthesized a series of 6-nitrobenzofuroxane derivatives and studied their ability to inhibit two viral enzymes - integrase and RNase H HIV-1.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/química , VIH-1/enzimología , Oxadiazoles/química , Inhibidores de la Transcriptasa Inversa/química , Humanos
3.
Acta Naturae ; 7(1): 78-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25927004

RESUMEN

Integration of human immunodeficiency virus (HIV-1) DNA into the genome of an infected cell is one of the key steps in the viral replication cycle. The viral enzyme integrase (IN), which catalyzes the integration, is an attractive target for the development of new antiviral drugs. However, the HIV-1 therapy often results in the IN gene mutations inducing viral resistance to integration inhibitors. To assess the impact of drug resistance mutations on the activity of IN of HIV-1 subtype A strain FSU-A, which is dominant in Russia, variants of the consensus IN of this subtype containing the primary resistance mutations G118R and Q148K and secondary compensatory substitutions E138K and G140S were prepared and characterized. Comparative study of these enzymes with the corresponding mutants of IN of HIV-1 subtype B strains HXB-2 was performed. The mutation Q148K almost equally reduced the activity of integrases of both subtypes. Its negative effect was partially compensated by the secondary mutations E138K and G140S. Primary substitution G118R had different influence on the activity of proteins of the subtypes A and B, and the compensatory effect of the secondary substitution E138K also depended on the viral subtype. Comparison of the mutants resistance to the known strand transfer inhibitors raltegravir and elvitegravir, and a new inhibitor XZ-259 (a dihydro-1H-isoindol derivative), showed that integrases of both subtypes with the Q148K mutation were insensitive to raltegravir and elvitegravir but were effectively inhibited by XZ-259. The substitution G118R slightly reduced the efficiency of IN inhibition by raltegravir and elvitegravir and caused no resistance to XZ_259.

4.
Acta Naturae ; 3(3): 12-28, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22649690

RESUMEN

The HIV-1 integrase enzyme is responsible for one of the key stages of retroviral replication; it acts as a catalyst for the integration of viral cDNA into the cell's genome. Inhibitors of HIV-1 integration have been under development for over 10 years; yet, only one integration inhibitor, raltegravir, has been approved for clinical use so far. Raltegravir binds two metal ions in the enzyme's active centre and blocks one of the integration stages: the strand transfer. Unfortunately, the clinical use of raltegravir results in the development of viral resistance among some patients. Several more HIV-1 integration inhibitors are undergoing clinical trials at the moment. However, the structure and mechanism of action of those are similar to raltegravir, which results in the emergence of cross resistance with raltegravir. The present review is focused on the history of the development and clinical trials of raltegravir and its analogues, the problems connected with the emergence of viral resistance to integration inhibitors, and the prospect of their future clinical use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...