Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Genet ; 1002021.
Artículo en Inglés | MEDLINE | ID: mdl-34282732

RESUMEN

Rice is one of the most important cereals of the world, with a substantial amount of genetic variation, and a staple food for more than half of the world's population. Salinity is the second most important abiotic stress after drought that adversely affects rice production globally. Both the seedling and reproductive stages are extremely sensitive to salinity but tolerant at the reproductive stage which is most crucial, as it translates into grain yield. Therefore, it is more important to identify the underlying factors of tolerance at the reproductive stage as a necessary step towards improving varieties for salinity environments. However, because of the difficulties in phenotyping protocols of salinity tolerance screening at the reproductive stage, only a few studies exist on this aspect. In view of this, a study involving 188 F4 rice lines derived from a cross CSR28 × Sadri along with the parents was carried out for phenotyping using a novel screening approach for the reproductive stage in salinity conditions and genotyping by SNP markers (Infinium Illumina 6K SNP chip) to construct a high-saturation linkage map. Quantitative trait loci analysis in an F4 population for physiological traits (chlorophyll a, chlorophyll b and carotenoid) and agronomic traits (plant height, filled grain number, grain yield and spikelet fertility percentage) led to the identification of 14 QTLs with an LOD range of 2.72-4.46 explaining phenotypic variation of 5.29-24.86% on chromosomes 1, 2, 3, 5, 6, 7 and 8. Tolerant alleles were contributed by both CSR28 and Sadri. The results indicated that both physiological and agronomic traits were involved in salinity tolerance at the reproductive stage and majority of the QTLs identified in this study are reported for the first time.


Asunto(s)
Oryza/genética , Sitios de Carácter Cuantitativo/genética , Estrés Salino/genética , Tolerancia a la Sal/genética , Alelos , Mapeo Cromosómico/métodos , Cromosomas de las Plantas , Genotipo , Oryza/crecimiento & desarrollo , Oryza/fisiología , Fenotipo , Reproducción/genética , Reproducción/fisiología , Plantones/genética
2.
Front Genet ; 12: 657970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054921

RESUMEN

The TIFY gene family, a key plant-specific transcription factor (TF) family, is involved in diverse biological processes including plant defense and growth regulation. Despite TIFY proteins being reported in some plant species, a genome-wide comparative and comprehensive analysis of TIFY genes in plant species can reveal more details. In the current study, the members of the TIFY gene family were significantly increased by the identification of 18 and six new members using maize and tomato reference genomes, respectively. Thus, a genome-wide comparative analysis of the TIFY gene family between 48 tomato (Solanum lycopersicum, a dicot plant) genes and 26 maize (Zea mays, a monocot plant) genes was performed in terms of sequence structure, phylogenetics, expression, regulatory systems, and protein interaction. The identified TIFYs were clustered into four subfamilies, namely, TIFY-S, JAZ, ZML, and PPD. The PPD subfamily was only detected in tomato. Within the context of the biological process, TIFY family genes in both studied plant species are predicted to be involved in various important processes, such as reproduction, metabolic processes, responses to stresses, and cell signaling. The Ka/Ks ratios of the duplicated paralogous gene pairs indicate that all of the duplicated pairs in the TIFY gene family of tomato have been influenced by an intense purifying selection, whereas in the maize genome, there are three duplicated blocks containing Ka/Ks > 1, which are implicated in evolution with positive selection. The amino acid residues present in the active site pocket of TIFY proteins partially differ in each subfamily, although the Mg or Ca ions exist heterogeneously in the centers of the active sites of all the predicted TIFY protein models. Based on the expression profiles of TIFY genes in both plant species, JAZ subfamily proteins are more associated with the response to abiotic and biotic stresses than other subfamilies. In conclusion, globally scrutinizing and comparing the maize and tomato TIFY genes showed that TIFY genes play a critical role in cell reproduction, plant growth, and responses to stress conditions, and the conserved regulatory mechanisms may control their expression.

3.
Biometals ; 34(3): 639-660, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33783656

RESUMEN

Magnesium (Mg) as a bimetal plays critical roles in biochemical processes, membrane stability, and enzyme activity. Mg transporters (MGTs) are involving in maintaining Mg homeostasis in cells. Although the MGT family members have been identified in different plant species, there is no comprehensive analysis of the other plants' MGT genes. In the current study, 62 and 41 non-redundant putative MGT proteins were recognized into the genome of Camelina sativa, and Triticum turgidum and they were compared based on physicochemical properties, protein structure, expression, and interaction. All identified MGTs were classified into three subgroups, NIPA, CorA, and MRS2/MGT, based on conserved-motifs distribution. The results showed that the secondary structure pattern in NIPA and MRS2 subfamily members in both studied plant species were highly similar. Furthermore, MGTs encompass the conserved structures and the critical sites mainly in the metal ion and Mg2+ binding centers as well as the catalytic sites were observed. The highest numbers of protein channels were predicted in CorA proteins in both C. sativa and T. turgidum with 24 and 17 channel numbers, respectively. The Ser, Pro, Gly, Lys, Tyr, and Arg amino acids were predicted as the binding residues in MGTs channel regions. The expression pattern of identified genes demonstrated that MGT genes have diverse tissue-specific expression and stress response expression patterns. Besides, 147 co-expressed genes with MGTs were clustered into the eight co-expression nodes involved in N-glycan biosynthesis, protein processing in the endoplasmic reticulum, carbon metabolism, biosynthesis of amino acids, and endocytosis. In the present study, all interpretations are based on in silico predictions, which can be used in further studies related to functional genomics of MGT genes.


Asunto(s)
Camellia/genética , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Magnesio/análisis , Triticum/genética , Camellia/metabolismo , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Triticum/metabolismo
4.
J Genet Eng Biotechnol ; 18(1): 62, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33074438

RESUMEN

BACKGROUND: Ethylene is a gaseous plant hormone that acts as a requisite role in many aspects of the plant life cycle, and it is also a regulator of plant responses to abiotic and biotic stresses. In this study, we attempt to provide comprehensive information through analyses of existing data using bioinformatics tools to compare the identified ethylene biosynthesis genes between Arabidopsis (as dicotyledonous) and rice (as monocotyledonous). RESULTS: The results exposed that the Arabidopsis proteins of the ethylene biosynthesis pathway had more potential glycosylation sites than rice, and 1-aminocyclopropane-1-carboxylate oxidase proteins were less phosphorylated than 1-aminocyclopropane-1-carboxylate synthase and S-adenosylmethionine proteins. According to the gene expression patterns, S-adenosylmethionine genes were more involved in the rice-ripening stage while in Arabidopsis, ACS2, and 1-aminocyclopropane-1-carboxylate oxidase genes were contributed to seed maturity. Furthermore, the result of miRNA targeting the transcript sequences showed that ath-miR843 and osa-miR1858 play a key role to regulate the post-transcription modification of S-adenosylmethionine genes in Arabidopsis and rice, respectively. The discovered cis- motifs in the promoter site of all the ethylene biosynthesis genes of A. thaliana genes were engaged to light-induced response in the cotyledon and root genes, sulfur-responsive element, dehydration, cell cycle phase-independent activation, and salicylic acid. The ACS4 protein prediction demonstrated strong protein-protein interaction in Arabidopsis, as well as, SAM2, Os04T0578000, Os01T0192900, and Os03T0727600 predicted strong protein-protein interactions in rice. CONCLUSION: In the current study, the complex between miRNAs with transcript sequences of ethylene biosynthesis genes in A. thaliana and O. sativa were identified, which could be helpful to understand the gene expression regulation after the transcription process. The binding sites of common transcription factors such as MYB, WRKY, and ABRE that control target genes in abiotic and biotic stresses were generally distributed in promoter sites of ethylene biosynthesis genes of A. thaliana. This was the first time to wide explore the ethylene biosynthesis pathway using bioinformatics tools that markedly showed the capability of the in silico study to integrate existing data and knowledge and furnish novel insights into the understanding of underlying ethylene biosynthesis pathway genes that will be helpful for more dissection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...