Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-480851

RESUMEN

Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable sterilizing immunity at the mucosal level. Our study uncovers, strong neutralizing mucosal component (NT50 [≤] 50pM), emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the Receptor-Binding-Domain (RBD) of SARS-CoV-2 spike protein and demonstrate that these IgAs are key mediators of potent neutralization. RBD-targeting IgAs were found to associate with the Secretory Component, indicating their bona-fide transcytotic origin and their dimeric tetravalent nature. The mechanistic understanding of the exceptionally high neutralizing activity provided by mucosal IgA, acting at the first line of defence, will advance vaccination design and surveillance principles, pointing to novel treatment approaches, and to new routes of vaccine administration and boosting. Significance statementWe unveiled powerful mucosal neutralization upon BNT162b2 vaccination, mediated by temporary polymeric IgA and explored its longitudinal properties. We present a model, whereby the molecular architecture of polymeric mucosal IgA and its spatial properties are responsible for the outstanding SARS-CoV-2 neutralization potential. We established a methodology for quantitative comparison of immunoreactivity and neutralization for IgG and IgAs in serum and saliva in molar equivalents for standardization in diagnostics, surveillance of protection and for vaccine evaluations.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-429751

RESUMEN

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and Nucleocapsid (N) proteins from SARS-CoV-2, and obtained cross-link sets with an average density of one cross-link per twenty residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites, and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and inter-domain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryo-EM structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...