Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Fluids (1994) ; 32(8): 083302, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32831537

RESUMEN

In this paper, we investigate the dynamics of spherical droplets in the presence of a source-sink pair flow field. The dynamics of the droplets is governed by the Maxey-Riley equation with the Basset-Boussinesq history term neglected. We find that, in the absence of gravity, there are two distinct behaviors for the droplets: small droplets cannot go further than a specific distance, which we determine analytically, from the source before getting pulled into the sink. Larger droplets can travel further from the source before getting pulled into the sink by virtue of their larger inertia, and their maximum traveled distance is determined analytically. We investigate the effects of gravity, and we find that there are three distinct droplet behaviors categorized by their relative sizes: small, intermediate-sized, and large. Counterintuitively, we find that the droplets with a minimum horizontal range are neither small nor large, but of intermediate size. Furthermore, we show that in conditions of regular human respiration, these intermediate-sized droplets range in size from a few µm to a few hundred µm. The result that such droplets have a very short range could have important implications for the interpretation of existing data on droplet dispersion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA