Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835839

RESUMEN

Magnesium oxide (MgO) thin films with different magnesium concentrations ([Mg2+] = 0.05, 0.1, 0.15 and 0.2 mol·L-1) in a spray solution have been successfully grown using a spray pyrolysis technique. X-ray diffraction (XRD), Maud software, FTIR spectroscopy, a confocal microscope, Wien2k software, spectrophotometry and a Photoluminescence spectrometer were used to investigate the structural, morphological and optical properties. XRD analysis revealed a better crystalline quality of the MgO thin layer synthesized with [Mg2+] = 0.15 mol·L-1, which crystallized into a face-centered cubic structure along the preferred orientation (200) lattice plan. The enhancement of the crystalline quality for the MgO thin film ([Mg2+] = 0.15 mol·L-1) was obtained, which was accompanied by an increment of 94.3 nm of the crystallite size. No secondary phase was detected and the purity phase of the MgO thin film was confirmed using Maud software. From the transmission spectra results, high transparent and antireflective properties of the MgO thin film were observed, with an average transmission value of about 91.48% in the visible range, which can be used as an optical window or buffer layer in solar cell applications. The films also have a high reflectance value in the IR range, which indicates that the highly reflective surface will prevent an increase in surface temperature under solar irradiation, which could be beneficial in solar cell applications. A direct band gap type was estimated using the Tauc relation which is close to the experimental value of 4.0 eV for optimal growth. The MgO material was tested for the degradation of methylene blue (MB), which reached a high photodegradation rate of about 83% after 180 min under sunlight illumination. These experimental trends open a new door for promising the removal of water contaminants for photocatalysis application.

2.
Appl Opt ; 44(1): 121-5, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15662893

RESUMEN

We have assembled a single-frequency imaging system at 3.4 THz with a quantum-cascade laser. Images of electronic and biological applications are demonstrated. We operate the laser with a peak output power of 2.5 mW at a 7% duty cycle and a 22 K operating temperature. The minimum spot size is 340 microm. The signal is detected with a single-element deuterated triglycine sulfate detector, and images are captured by scanning of the sample.

3.
Philos Trans A Math Phys Eng Sci ; 362(1815): 215-29; discussion 229-31, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15306516

RESUMEN

Recent developments in terahertz quantum cascade lasers are reviewed. Structures operating from a wavelength of lambda = 66 microm down to lambda = 87 microm are demonstrated. These devices used either a three-quantum-well chirped-superlattice active region or an active region based on a bound-to-continuum transition. The comparison between structures grown in a waveguide based on a single interface plasmon and a buried contact and (non-lasing) structures using a double plasmon waveguide demonstrates the importance of waveguide design on the operation of such devices. Continuous-wave operation up to a maximum temperature of 55 K with up to 15 mW output power at 10 K was demonstrated.

4.
Opt Lett ; 29(1): 122-4, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14719681

RESUMEN

Quantum-cascade lasers operating at 4.7, 3.5, and 2.3 THz have been used to achieve cyclotron resonance in InAs and InSb quantum wells from liquid-helium temperatures to room temperature. This represents one of the first spectroscopic applications of terahertz quantum-cascade lasers. Results show that these compact lasers are convenient and reliable sources with adequate power and stability for this type of far-infrared magneto-optical study of solids. Their compactness promises interesting future applications in solid-state spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...