Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Contemp Clin Trials ; 131: 107250, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37271412

RESUMEN

BACKGROUND: Tobacco and cannabis co-use is a growing public health problem. The synergistic effects of cannabis and nicotine on neurobiological systems that mediate reward and shared environmental cues reinforcing use may make tobacco smoking cessation more difficult. N-acetylcysteine (NAC), an FDA-approved medication and over-the-counter supplement, has shown promise in animal studies and randomized controlled trials (RCTs) in reducing tobacco and cannabis craving and use. NAC's potential efficacy in treating addiction may be attributable to its central nervous system effects in reducing excessive glutamatergic activity, oxidative stress, and inflammation. To date, no RCT has examined NAC for smoking cessation among dual users of tobacco and cannabis. METHOD: In a double-blind, placebo-controlled RCT, we will examine NAC for smoking cessation among dual users of tobacco and cannabis. Sixty adult cigarette-cannabis co-users are randomized to receive NAC 3600 mg per day or placebo over 8 weeks. Participants in both groups receive 8 weekly cognitive behavioral therapy sessions addressing smoking cessation and cannabis reduction. Outcomes are assessed at Weeks 0, 4, 8, and 12. Primary aims are to determine NAC's efficacy in decreasing cigarette craving, nicotine dependence, and use; and cannabis craving and use. Exploratory aims include examination of changes in neurocognition with NAC and their potential mediational effects on cigarette and cannabis use outcomes. CONCLUSION: Results will inform smoking cessation treatment among dual users of tobacco and cannabis. CLINICALTRIALS: gov Identifier: NCT04627922.


Asunto(s)
Cannabis , Cese del Hábito de Fumar , Tabaquismo , Adulto , Humanos , Cese del Hábito de Fumar/métodos , Acetilcisteína/uso terapéutico , Tabaquismo/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Nat Struct Mol Biol ; 23(5): 450-5, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27018804

RESUMEN

Antisense long noncoding RNAs (ASlncRNAs) have been implicated in regulating gene expression in response to physiological cues. However, little is known about the evolutionary dynamics of ASlncRNA and what underlies the evolution of their expression. Here, using budding yeast Saccharomyces spp. and Naumovozyma castellii as models, we show that ASlncRNA repertoires have expanded since the loss of RNA interference (RNAi), in terms of their expression levels, their lengths and their degree of overlap with coding genes. Furthermore, we show that RNAi is inhibitory to ASlncRNA transcriptomes and that increased expression of ASlncRNAs in the presence of RNAi is deleterious to N. castellii, which has retained RNAi. Together, our results suggest that the loss of RNAi had substantial effects on the genome-wide increase in expression of ASlncRNAs during the evolution of budding yeasts.


Asunto(s)
Interferencia de ARN , ARN de Hongos/genética , ARN Largo no Codificante/genética , Saccharomyces/genética , Evolución Molecular , Exosomas/genética , Exosomas/metabolismo , Regulación Fúngica de la Expresión Génica , Filogenia , ARN de Hongos/metabolismo , ARN Largo no Codificante/metabolismo , Saccharomyces/metabolismo , Transcriptoma
3.
Curr Opin Genet Dev ; 37: 46-50, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26821363

RESUMEN

Long noncoding RNAs (lncRNAs) were discovered in eukaryotes more than 30 years ago [1]. Recent advances in genomics have led to the discovery that lncRNAs are transcribed pervasively across the genome [2(•),3,4,5(•)]. There are an increasing number of reports that identify lncRNAs whose expression is modulated during cell differentiation or in disease states. However, biological functions for the vast majority of them are yet to be determined. Here, we propose two ways to identify lncRNAs that have biological functions: to identify lncRNAs with dedicated preinitiation complexes (PICs), and to focus on those whose transcription is highly regulated.


Asunto(s)
Eucariontes/genética , ARN Largo no Codificante/genética , Regulación de la Expresión Génica/genética , Genoma/genética , ARN Largo no Codificante/aislamiento & purificación , Transcripción Genética
4.
Genes Dev ; 28(21): 2348-60, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25367034

RESUMEN

Long noncoding RNAs (lncRNAs) are pervasively transcribed across eukaryotic genomes, but functions of only a very small subset of them have been demonstrated. This has led to active debate about whether many of them have any biological functions. In addition, very few regulators of lncRNAs have been identified. We developed a novel genetic screen using reconstituted RNAi in Saccharomyces cerevisiae and systematically identified a large number of putative lncRNA repressors. Among them, we found that four highly conserved chromatin remodeling factors are global lncRNA repressors that play major roles in shaping the eukaryotic lncRNA transcriptome. Importantly, we identified >250 antisense lncRNAs (CRRATs [chromatin remodeling-repressed antisense transcripts]) whose repression by these chromatin remodeling factors is required for the maintenance of normal levels of overlapping mRNA transcripts. Our results strongly suggest that regulation of mRNA through repression of antisense lncRNAs is far more broadly used than previously appreciated.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Regulación Fúngica de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutación , Interferencia de ARN , ARN Largo no Codificante/química , Transcriptoma
5.
Nat Struct Mol Biol ; 15(2): 213-5, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18223660

RESUMEN

To locate key RNA features in the structure of the spliceosome by EM, we fused a sequence-specific RNA binding protein to a protein with a distinct donut-shaped structure. We used this fusion to label spliceosomes assembled on a pre-mRNA that contained the target sequence in the exons. The label is clearly visible in EM images of the spliceosome, and subsequent image processing with averaging shows that the exons sit close to each other in the complex. This labeling strategy will serve as a general tool for analyzing the structures of RNA-containing macromolecular complexes.


Asunto(s)
Exones , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Empalmosomas/ultraestructura , Coloración y Etiquetado/métodos , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica de Transmisión , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/genética , Empalmosomas/química
6.
Inorg Chem ; 46(6): 2328-38, 2007 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-17315866

RESUMEN

As part of our search for photoactive ruthenium nitrosyls, a set of {RuNO}6 nitrosyls has been synthesized and structurally characterized. In this set, the first nitrosyl [(SBPy3)Ru(NO)](BF4)3 (1) is derived from a polypyridine Schiff base ligand SBPy3, while the remaining three nitrosyls are derived from analogous polypyridine ligands containing either one ([(PaPy3)Ru(NO)](BF4)2 (2)) or two ([(Py3P)Ru(NO)]BF4 (3) and [(Py3P)Ru(NO)(Cl)] (4)) carboxamide group(s). The coordination structures of 1 and 2 are very similar except that in 2, a carboxamido nitrogen is coordinated to the ruthenium center in place of an imine nitrogen in case of 1. In 3 and 4, the ruthenium center is coordinated to two carboxamido nitrogens in the equatorial plane and the bound NO is trans to a pyridine nitrogen (in 3) and chloride (in 4), respectively. Complexes 1-3 contain N6 donor set, and the NO stretching frequencies (nuNO) correlate well with the N-O bond distances. All four diamagnetic {RuNO}(6) nitrosyls are photoactive and release NO rapidly upon illumination with low-intensity (5-10 mW) UV light. Interestingly, photolysis of 1 generates the diamagnetic Ru(II) photoproduct [(SBPy3)Ru(MeCN)](2+) while 2-4 afford paramagnetic Ru(III) species in MeCN solution. The quantum yield values of NO release under UV illumination (lambda(max) = 302 nm) lie in the range 0.06-0.17. Complexes 3 and 4 also exhibit considerable photoactivity under visible light. The efficiency of NO release increases in the order 2 < 3 < 4, indicating that photorelease of NO is facilitated by (a) the increase in the number of coordinated carboxamido nitrogen(s) and (b) the presence of negatively charged ligands (like chloride) trans to the bound NO.


Asunto(s)
Amidas/química , Iminas/química , Óxido Nítrico/química , Compuestos Nitrosos/química , Piridinas/química , Compuestos de Rutenio/química , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Fotoquímica , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...