Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1393170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974985

RESUMEN

Spring wheat (Triticum aestivum L.) remains an important alternative to winter wheat cultivation at Northern latitudes due to high risk of overwintering or delayed sowing of winter wheat. We studied nine major agronomic traits in a set of 299 spring wheat genotypes in trials across 12-year-site combinations in Lithuania, Latvia, Estonia, and Norway for three consecutive years. The dataset analyzed here consisted of previously published phenotypic data collected in 2021 and 2022, supplemented with additional phenotypic data from the 2023 field season collected in this study. We combined these phenotypic datasets with previously published genotypic data generated using a 25K single nucleotide polymorphism (SNP) array that yielded 18,467 markers with a minor allele frequency above 0.05. Analysis of these datasets via genome-wide association study revealed 18 consistent quantitative trait loci (QTL) replicated in two or more trials that explained more than 5% of phenotypic variance for plant height, grain protein content, thousand kernel weight, or heading date. The most consistent markers across the tested environments were detected for plant height, thousand kernel weight, and days to heading in eight, five, and six trials, respectively. No beneficial effect of the semi-dwarfing alleles Rht-B1b and Rht-D1b on grain yield performance was observed across the 12 tested trials. Moreover, the cultivars carrying these alleles were low yielding in general. Based on principal component analysis, wheat genotypes developed in the Northern European region clustered separately from those developed at the southern latitudes, and markers associated with the clustering were identified. Important phenotypic traits, such as grain yield, days to heading, grain protein content, and thousand kernel weight were associated with this clustering of the genotype sets. Interestingly, despite being adapted to the Nordic environment, genotypes in the Northern set demonstrated lower grain yield performance across all tested environments. The results indicate that spring wheat germplasm harbors valuable QTL/alleles, and the identified trait-marker associations might be useful in improving Nordic-Baltic spring wheat germplasm under global warming conditions.

2.
Front Plant Sci ; 15: 1395830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807787

RESUMEN

Winter wheat achieves freezing tolerance (FT) through cold acclimation (CA) - a process which is induced by low positive temperatures in autumn. The increasing occurrences of temperature fluctuations in winter lead to deacclimation (DEA), causing premature loss of FT, and the cultivars capable of reacclimation (REA) are more likely to survive the subsequent cold spells. The genetic mechanisms of DEA and REA remain poorly understood, necessitating further research to bolster climate resilience in winter wheat. Here, we selected two winter wheat genotypes with contrasting levels of FT and conducted a ten-week-long experiment imitating low-temperature fluctuations after CA under controlled conditions. Crown and leaf tissue samples for RNA-sequencing were collected at CA, DEA, and REA time-points. It is the first transcriptomic study covering both short- and long-term responses to DEA and REA in winter wheat. The study provides novel knowledge regarding CA, DEA, and REA and discusses the gene expression patterns conferring FT under temperature fluctuations. The freezing-tolerant genotype "Lakaja DS" showed elevated photosynthetic activity in leaf tissue and upregulated cryoprotective protein-encoding genes in crowns after CA when compared to the freezing-susceptible "KWS Ferrum". "Lakaja DS" also expressed cold acclimation-associated transcripts at a significantly higher level after 1 week of DEA. Following REA, "Lakaja DS" continued to upregulate dehydrin-related genes in crowns and exhibited significantly higher expression of chitinase transcripts in leaves, when compared to "KWS Ferrum". The findings of this study shed light on the genetic mechanisms governing DEA and REA in winter wheat, thus addressing the gaps in knowledge regarding FT under low-temperature fluctuations. The identified genes should be further examined as potential molecular markers for breeding strategies focused on developing freezing-tolerant winter-type crops. Publicly available datasets generated in this study are valuable resources for further research into DEA and REA, contributing towards the enhancement of winter wheat under global climate change.

3.
Theor Appl Genet ; 137(1): 25, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240841

RESUMEN

KEY MESSAGE: QPm.NOBAL-3A is an important QTL providing robust adult plant powdery mildew resistance in Nordic and Baltic spring wheat, aiding sustainable crop protection and breeding. Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, poses a significant threat to bread wheat (Triticum aestivum L.), one of the world's most crucial cereal crops. Enhancing cultivar resistance against this devastating disease requires a comprehensive understanding of the genetic basis of powdery mildew resistance. In this study, we performed a genome-wide association study (GWAS) using extensive field trial data from multiple environments across Estonia, Latvia, Lithuania, and Norway. The study involved a diverse panel of recent wheat cultivars and breeding lines sourced from the Baltic region and Norway. We identified a major quantitative trait locus (QTL) on chromosome 3A, designated as QPm.NOBAL-3A, which consistently conferred high resistance to powdery mildew across various environments and countries. Furthermore, the consistency of the QTL haplotype effect was validated using an independent Norwegian spring wheat panel. Subsequent greenhouse seedling inoculations with 15 representative powdery mildew isolates on a subset of the GWAS panel indicated that this QTL provides adult plant resistance and is likely of race non-specific nature. Moreover, we developed and validated KASP markers for QPm.NOBAL-3A tailored for use in breeding. These findings provide a critical foundation for marker-assisted selection in breeding programs aimed at pyramiding resistance QTL/genes to achieve durable and broad-spectrum resistance against powdery mildew.


Asunto(s)
Ascomicetos , Sitios de Carácter Cuantitativo , Triticum/genética , Triticum/microbiología , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Resistencia a la Enfermedad/genética , Genes de Plantas , Ascomicetos/genética , Fitomejoramiento , Cromosomas de las Plantas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
Plants (Basel) ; 12(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068649

RESUMEN

Climate change and global food security efforts are driving the need for adaptable crops in higher latitude temperate regions. To achieve this, traits linked with winter hardiness must be introduced in winter-type crops. Here, we evaluated the freezing tolerance (FT) of a panel of 160 winter wheat genotypes of Nordic origin under controlled conditions and compared the data with the winter hardiness of 74 of these genotypes from a total of five field trials at two locations in Norway. Germplasm with high FT was identified, and significant differences in FT were detected based on country of origin, release years, and culton type. FT measurements under controlled conditions significantly correlated with overwintering survival scores in the field (r ≤ 0.61) and were shown to be a reliable complementary high-throughput method for FT evaluation. Genome-wide association studies (GWAS) revealed five single nucleotide polymorphism (SNP) markers associated with FT under controlled conditions mapped to chromosomes 2A, 2B, 5A, 5B, and 7A. Field trials yielded 11 significant SNP markers located within or near genes, mapped to chromosomes 2B, 3B, 4A, 5B, 6B, and 7D. Candidate genes identified in this study can be introduced into the breeding programs of winter wheat in the Nordic region.

5.
Plants (Basel) ; 11(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36365271

RESUMEN

Low temperature during cold acclimation (CA) leads to the accumulation of detrimental reactive oxygen species (ROS) in plant tissues, which are scavenged by antioxidants, such as ascorbate and glutathione. However, there is a lack of studies examining the dynamics of antioxidants throughout CA, deacclimation (DEA), and reacclimation (REA) in winter wheat. Six winter wheat genotypes were selected to assess the effect of CA, DEA, and REA on the concentrations of ascorbate and glutathione in leaf and crown tissues under two CA temperature treatments. Higher levels of total, reduced, and oxidised ascorbate were determined in leaves, whereas crowns accumulated higher concentrations of nicotinamide adenine dinucleotide (NAD+) after CA, DEA, and REA. Constant low temperature (CLT) during CA led to higher contents of ascorbate and glutathione in both tissues at all stages of acclimation, in comparison with prolonged higher low temperature (PHLT). The concentrations of antioxidants increased after CA, tended to decrease after DEA, and returned to CA levels after REA. Significant positive correlations between freezing tolerance (FT) and antioxidants were only determined under the CA at CLT treatment, thus, affirming the negative effect of PHLT during CA on the FT of winter wheat.

6.
Front Plant Sci ; 13: 959118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046584

RESUMEN

Global climate change will cause longer and warmer autumns, thus negatively affecting the quality of cold acclimation (CA) and reducing the freezing tolerance (FT) of winter wheat. Insufficient FT and fluctuating temperatures during winter can accelerate the deacclimation (DEA) process, whereas reacclimation (REA) is possible only while the vernalization requirement is unfulfilled. Six winter wheat genotypes with different winter hardiness profiles were used to evaluate the impact of constant low-temperature (2°C) and prolonged higher low-temperature (28 days at 10°C followed by 2°C until day 49) on shoot biomass and metabolite accumulation patterns in leaf and crown tissues throughout 49 days of CA, 7 days of DEA, and 14 days of REA. The FT of winter wheat was determined as LT30 values by conducting freezing tests after CA, DEA, and REA. Shoot biomass accumulation, projected as the green leaf area (GLA), was investigated by non-destructive RGB imaging-based phenotyping. Dynamics of carbohydrates, hexose phosphates, organic acids, proteins, and amino acids were assessed in leaf and crown tissues. Results revealed that exposure to higher low-temperature induced higher accumulation of shoot biomass and had a negative impact on FT of winter wheat. Prolonged higher low-temperature negatively affected the accumulation of soluble carbohydrates, protein content and amino acids, and had a positive effect on starch accumulation in leaf and crown tissues after CA, in comparison with the constant low-temperature treatment. DEA resulted in significantly reduced FT. Lower concentrations of glucose-6-phosphate, sucrose and proline, as well as higher concentrations of starch in leaves and crowns were found after DEA. The majority of the genotypes regained FT after REA; higher concentrations of glucose and malate in leaves, and sucrose in crown tissue were observed, whereas starch accumulation was decreased in both tissues. Negative correlations were determined between FT and starch concentration in leaves and crowns, while proline and proteins, accumulated in crowns, showed positive correlations with FT. This study broadens the knowledge regarding the effect of different low-temperature regimes on the dynamics of metabolite accumulation in winter wheat throughout CA, DEA, and REA, and its relationship to biomass accumulation and FT.

7.
Front Plant Sci ; 11: 570204, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519834

RESUMEN

Global warming is predicted to impact many agricultural areas, which will suffer from reduced water availability. Due to precipitation changes, mild summer droughts are expected to become more frequent, even in temperate regions. For perennial ryegrass (Lolium perenne L.), an important forage grass of the Poaceae family, leaf growth is a crucial factor determining biomass accumulation and hence forage yield. Although leaf elongation has been shown to be temperature-dependent under normal conditions, the genetic regulation of leaf growth under water deficit in perennial ryegrass is poorly understood. Herein, we evaluated the response to water deprivation in a diverse panel of perennial ryegrass genotypes, employing a high-precision phenotyping platform. The study revealed phenotypic variation for growth-related traits and significant (P < 0.05) differences in leaf growth under normal conditions within the subgroups of turf and forage type cultivars. The phenotypic data was combined with genotypic variants identified using genotyping-by-sequencing to conduct a genome-wide association study (GWAS). Using GWAS, we identified DNA polymorphisms significantly associated with leaf growth reduction under water deprivation. These polymorphisms were adjacent to genes predicted to encode for phytochrome B and a MYB41 transcription factor. The result obtained in the present study will increase our understanding on the complex molecular mechanisms involved in plant growth under water deficit. Moreover, the single nucleotide polymorphism (SNP) markers identified will serve as a valuable resource in future breeding programs to select for enhanced biomass formation under mild summer drought conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...