Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39163587

RESUMEN

All-solid-state lithium batteries, including sulfide electrolytes and nickel-rich layered oxide cathode materials, promise safer electrochemical energy storage with high gravimetric and volumetric densities. However, the poor electrical conductivity of the active material results in the requirement for additional conducive additives, which tend to react negatively with the sulfide electrolyte. The fundamental scientific principle uncovered through this work is simple and suggests that the electrical network benefits associated with the introduction of short-length carbons will eventually be overpowered by the increase in bulk resistance associated with their instability in the sulfide electrolyte. However, applying just the right amount of short carbon fibres minimizes degradation of the sulfide solid electrolyte and maximizes the electron movement. Therefore, we propose the application of a low-weight-percent carbon nanotubes (CNTs) coating on the nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 (NCM811) along with large-aspect-ratio carbon nanofibers (CNFs) as the primary conductive additive. When only 0.3 wt % CNTs was utilized with 4.7 wt % CNFs, an initial Coulombic efficiency of 83.55% at 0.05C and a notably excellent capacity retention of 90.1% over 50 cycles at 0.5C were achieved along with a low ionic resistance. This work helps to confirm the validity of applying short carbon pathways in sulfide-electrolyte-based cathode composites and proposes their combination with a larger primary carbon additive as a solution to the ongoing all-solid-state battery rate and instability issues.

2.
Nanomaterials (Basel) ; 13(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063760

RESUMEN

Sulfide electrolyte all-solid-state lithium-ion batteries (ASSLBs) that have inherently nonflammable properties have improved greatly over the past decade. However, determining both the stable and functional electrode components to pair with these solid electrolytes requires significant investigation. Solid electrolyte comprises 20-40% of the composite cathode electrode, which improves the ionic conductivity. However, this results in thick electrolyte that blocks the electron pathways in the electrode, significantly lowering the electrochemical performance. The application of conductive carbon material is required to overcome this issue, and, hence, determining the carbon properties that result in the most stable performance in the sulfide solid electrolyte is vital. This study analyzes the effect of the cathode conductive additive's morphology on the electrochemical performance of sulfide electrolyte-based ASSLBs. Carbon black (CB) and carbon nanotubes (CNTs), which provide electron pathways at the nanoscale and sub-micron scale, and carbon nanofiber (CNF), which provides electron pathways at the tens-of-microns scale, are all tested individually as potential conductive additives. When the CNF, with its high crystallinity, is used as a conductive material, the electrochemical performance shows an excellent initial discharge capacity of 191.78 mAh/g and a 50-cycle capacity retention of 83.9%. Conversely, the CB and the CNTs, with their shorter pathways and significantly increased surface area, show a relatively low electrochemical performance. By using the CNF to provide excellent electrical conductivity to the electrode, the polarization is suppressed. Furthermore, the interfacial impedance across the charge transfer region is also reduced over 50 cycles compared with the CB and CNT composite cells. These findings stringently analyze and emphasize the importance of the morphology of the carbon conductive additives in the ASSLB cathode electrodes, with improvements in the electrochemical performance being realized through the application of long-form two-dimensional crystalline CNFs.

3.
Angew Chem Int Ed Engl ; 61(25): e202201249, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35419922

RESUMEN

All-solid-state Li batteries (ASSBs) promise better performance and higher safety than the current liquid-based Li-ion batteries (LIBs). Sulfide ASSBs have been extensively studied and considerably advanced in recent decades. Research on identifying suitable cathode materials for sulfide ASSBs is currently well established, with great progress being made in the commercialization of layered cathodes in the liquid-based LIBs. Research on anode materials for sulfide ASSBs is of great importance for enhancing the battery energy density. However, it seems that little has been published that summarizes studies of anode materials for sulfide ASSBs and suggests future research directions. Thus, within this Minireview, we aim to provide an overview of previous and current research focused on anode materials for sulfide ASSBs and to suggest a future research direction for developing suitable anode systems for sulfide ASSBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...