Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 182: 106207, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37414303

RESUMEN

Quality of apricot fruit is affected by different biotic stresses during growth, harvesting and storage. Due to fungal attack, huge losses of its quality and quantity are observed. The present research was designed for the diagnoses and management of postharvest rot disease of apricot. Infected apricot fruit were collected, and the causative agent was identified as A. tubingensis. To control this disease, both bacterial-mediated nanoparticles (b-ZnO NPs) and mycosynthesized nanoparticles (f-ZnO NPs) were used. Herein, biomass filtrates of one selected fungus (Trichoderma harzianum) and one bacterium (Bacillus safensis) were used to reduce zinc acetate into ZnO NPs. The physiochemical and morphological characters of both types of NPs were determined. UV-vis spectroscopy displayed absorption peaks of f-ZnO NPs and b-ZnO NPs at 310-380 nm, respectively, indicating successful reduction of Zinc acetate by the metabolites of both fungus and bacteria. Fourier transform infrared (FTIR) determined the presence of organic compounds like amines, aromatics, alkenes and alkyl halides, on both types of NPs, while X-ray diffraction (XRD) confirmed nano-size of f-ZnO NPs (30 nm) and b-ZnO NPs (35 nm). Scanning electron microscopy showed flower-crystalline shape for b-ZnO NPs and spherical-crystalline shape for f-ZnO NPs. Both NPs showed variable antifungal activities at four different concentrations (0.25, 0.50, 0.75 and 1.00 mg/ml). Diseases control and postharvest changes in apricot fruit were analyzed for 15 days. Among all treatments, 0.50 mg/ml concentration of f-ZnO NPs and 0.75 mg/ml concentration of b-ZnO NPs exhibited the strongest antifungal activity. Comparatively, f-ZnO NPs performed slightly better than b-ZnO NPs. Application of both NPs reduced fruit decay and weight, maintained higher ascorbic acid contents, sustained titratable acidity, and preserved firmness of diseased fruit. Our results suggest that microbial synthesized ZnO NPs can efficiently control fruit rot, extend shelf life, and preserve the quality of apricot.


Asunto(s)
Nanopartículas del Metal , Prunus armeniaca , Óxido de Zinc , Antifúngicos/farmacología , Óxido de Zinc/química , Prunus armeniaca/metabolismo , Ácido Ascórbico/farmacología , Acetato de Zinc , Pruebas de Sensibilidad Microbiana , Bacterias/metabolismo , Extractos Vegetales/química , Antibacterianos/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
2.
Braz J Microbiol ; 54(3): 1341-1350, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37400611

RESUMEN

The subtropical fruit known as the loquat is prized for both its flavour and its health benefits. The perishable nature of loquat makes it vulnerable to several biotic and abiotic stressors. During the previous growing season (March-April 2021), loquat in Islamabad showed signs of fruit rot. Loquat fruits bearing fruit rot symptoms were collected, and the pathogen that was causing the disease isolated and identified using its morphology, microscopic visualisation, and rRNA sequence. The pathogen that was isolated was identified as Fusarium oxysporum. Green synthesized metallic iron oxide nanoparticles (Fe2O3 NPs) were employed to treat fruit rot disease. Iron oxide nanoparticles were synthesized using a leaf extract of the Calotropis procera. Characterization of NPs was performed by different modern techniques. Fourier transform infrared spectroscopy (FTIR) determined the existence of stabilizing and reducing compounds like phenol, carbonyl compounds, and nitro compounds, on the surface of Fe2O3 NPs. X-ray diffraction (XRD) explained the crystalline nature and average size (~49 nm) of Fe2O3 NPs. Energy dispersive X-ray (EDX) exhibited Fe and O peaks, and scanning electron microscopy (SEM) confirmed the smaller size and spherical shape of Fe2O3 NPs. Following both in vitro and in vivo approaches, the antifungal potential of Fe2O3 NPs was determined, at different concentrations. The results of both in vitro and in vivo analyses depicted that the maximum fungal growth inhibition was observed at concentration of 1.0 mg/mL of Fe2O3 NPs. Successful mycelial growth inhibition and significantly reduced disease incidence suggest the future application of Fe2O3 NPs as bio fungicides to control fruit rot disease of loquat.


Asunto(s)
Eriobotrya , Fusarium , Nanopartículas del Metal , Nanopartículas , Frutas/química , Nanopartículas del Metal/química , Pakistán , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Difracción de Rayos X , Antibacterianos/farmacología
3.
Front Plant Sci ; 13: 1039329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426143

RESUMEN

The WRKY transcription factor (TF) belongs to one of the major plant protein superfamilies. The WRKY TF gene family plays an important role in the regulation of transcriptional reprogramming associated with plant stress responses. Change in the expression patterns of WRKY genes or the modifications in their action; participate in the elaboration of numerous signaling pathways and regulatory networks. WRKY proteins contribute to plant growth, for example, gamete formation, seed germination, post-germination growth, stem elongation, root hair growth, leaf senescence, flowering time, and plant height. Moreover, they play a key role in many types of environmental signals, including drought, temperature, salinity, cold, and biotic stresses. This review summarizes the current progress made in unraveling the functions of numerous WRKY TFs under drought, salinity, temperature, and cold stresses as well as their role in plant growth and development.

4.
Micromachines (Basel) ; 13(9)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36144084

RESUMEN

Lychee (Litchi chinensis Sonn.) is a famous fruit species of tropical and subtropical regions of the world and many biotic and abiotic stresses affect its yield. In this study, lychee fruit rot has been observed and its incidence has been controlled by using zinc oxide nanoparticles (ZnO NPs). Diseased lychee fruits were collected and diagnosed to identify disease-causing pathogens. Morphological appearance, microscopic observation, and sequence analysis of the amplified ITS region identified this isolated pathogen as Aspergillus niger. To control this problem, ZnO NPs were prepared in the leaf extract of Azadirachta indica. Before their antifungal activity, ZnO NPs were characterized using sophisticated approaches. FTIR revealed the presence of reducing and stabilizing molecules on ZnO NPs including alcohol, carboxylic acid, alkyl halide, amine, and alkyl halide. Crystalline nature and average size (29.024 nm) of synthesized ZnO NPs were described by X-ray diffraction. EDX analysis depicted the mass percentage of zinc (30.15%) and oxygen (14.90%). SEM analysis displayed the irregular shape of nanoparticles and confirmed the nano-size of ZnO NPs. Maximum mycelial growth inhibition (70.5%) was observed at 1.0 mg/mL concentration of ZnO NPs in vitro. In in-vivo disease-control analysis, maximum control of lychee fruit rot disease was observed at the same concentration. These results reveal the potential use of these ZnO NPs on a larger scale to replace hazardous chemical fungicides.

5.
Molecules ; 27(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889333

RESUMEN

Cherry is a fleshy drupe, and it is grown in temperate regions of the world. It is perishable, and several biotic and abiotic factors affect its yield. During April-May 2021, a severe fruit rot of cherry was observed in Swat and adjacent areas. Diseased fruit samples were collected, and the disease-causing pathogen was isolated on PDA. Subsequent morphological, microscopic, and molecular analyses identified the isolated pathogen as Aspergillus flavus. For the control of the fruit rot disease of cherry, iron oxide nanoparticles (Fe2O3 NPs) were synthesized in the leaf extract of Calotropis procera and characterized. Fourier transform infrared (FTIR) spectroscopy of synthesized Fe2O3 NPs showed the presence of capping and stabilizing agents such as alcohols, aldehydes, and halo compounds. X-ray diffraction (XRD) analysis verified the form and size (32 nm) of Fe2O3 NPs. Scanning electron microscopy (SEM) revealed the spinal-shaped morphology of synthesized Fe2O3 NPs while X-ray diffraction (EDX) analysis displayed the occurrence of main elements in the samples. After successful preparation and characterization of NPs, their antifungal activity against A. flavus was determined by poison technique. Based on in vitro and in vivo antifungal activity analyses, it was observed that 1.0 mg/mL concentration of Fe2O3 can effectively inhibit the growth of fungal mycelia and decrease the incidence of fruit rot of cherry. The results confirmed ecofriendly fungicidal role of Fe2O3 and suggested that their large-scale application in the field to replace toxic chemical fungicides.


Asunto(s)
Calotropis , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Frutas , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Ecotoxicol Environ Saf ; 233: 113311, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217307

RESUMEN

Grapefruit (Citrus paradisi) is a widely grown citrus and its fruit is affected by a variety of biotic and abiotic stress. Keeping in view the hazardous effects of synthetic fungicides, the recent trend is shifting towards safer and eco-friendly control of fruit diseases. The present study was aimed to diagnose the fruit rot disease of grapefruit and its control by using zinc oxide green nanoparticles (ZnO NPs). Fruit rot symptoms were observed in various grapefruit growing sites of Pakistan. Diseased samples were collected, and the disease-causing pathogen was isolated. Following Koch's postulates, the isolated pathogen was identified as Rhizoctonia solani. For eco-friendly control of this disease, ZnO NPs were prepared in the seed extract of Trachyspermum ammi and characterized. Fourier transform infrared spectroscopy (FTIR) of these NPs described the presence of stabilizing and reducing compounds such as phenols, aldehyde and vinyl ether, especially thymol (phenol). X-ray diffraction (XRD) analysis revealed their crystalline nature and size (48.52 nm). Energy dispersive X-ray (EDX) analysis elaborated the presence of major elements in the samples, while scanning electron microscopy (SEM) confirmed the morphology of bio fabricated NPs. ZnO NPs exhibited very good anti-fungal activity and the most significant fungal growth inhibition was observed at 1.0 mg/ml concentration of green NPs, in vitro and in vivo. These findings described that the bioactive constituents of T. ammi seed extract can effectively reduce and stabilize ZnO NPs. It is a cost-effective method to successfully control the fruit rot disease of grapefruit.


Asunto(s)
Ammi , Citrus paradisi , Fungicidas Industriales , Nanopartículas del Metal , Óxido de Zinc , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Frutas , Fungicidas Industriales/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Pruebas de Sensibilidad Microbiana , Nitratos , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Compuestos de Zinc , Óxido de Zinc/química
7.
J Appl Microbiol ; 132(5): 3735-3745, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35152519

RESUMEN

AIMS: Iron oxide nanoparticles (Fe2 O3 NPs) were mycosynthesized using Trichoderma harzianum and applied to control brown rot of apple. The influence of Fe2 O3 NPs on the quality of fruit was also studied. METHODS AND RESULTS: Diseased apple fruits with brown rot symptoms were collected, and the disease-causing pathogen was isolated and identified as Fusarium oxysporum. To control this disease, mycosynthesis of Fe2 O3 NPs was executed using T. harzianum. FTIR spectroscopy revealed the occurrence of stabilizing and reducing agents on NPs. X-ray diffraction (XRD) analysis determined their average size (17.78 nm) and crystalline nature. Energy-dispersive X-ray (EDX) showed strong signals of iron, and scanning electron microscopy (SEM) displayed a high degree of polydispersity of synthesized NPs. Foliar application of NPs significantly reduced brown rot and helped fruits to maintain biochemical and organoleptic properties. Firmness and higher percentage of soluble solids, sugars and ascorbic acid depicted its good quality. CONCLUSION: Environment-friendly mycosynthesized Fe2 O3 NPs can be effectively used to control brown rot of apple. SIGNIFICANCE AND IMPACT OF THE STUDY: Trichoderma harzianum is a famous biocontrol agent, and the synthesis of NPs in its extract is an exciting avenue to control fungal diseases. Due to its nontoxic nature to human gut, it can be applied on all edible fruits.


Asunto(s)
Hypocreales , Malus , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Sensación
8.
Molecules ; 26(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799864

RESUMEN

Green synthesis of nanomaterials is advancing due to its ease of synthesis, inexpensiveness, nontoxicity and renewability. In the present study, an eco-friendly biogenic method was developed for the green synthesis of nickel oxide nanoparticles (NiONPs) using phytochemically rich Berberis balochistanica stem (BBS) extract. The BBS extract was rich in phenolics, flavonoids and berberine. These phytochemicals successfully reduced and stabilised the NiNO3 (green) into NiONPs (greenish-gray). BBS-NiONPs were confirmed by using UV-visible spectroscopy (peak at 305 nm), X-ray diffraction (size of 31.44 nm), Fourier transform infrared spectroscopy (identified -OH group and Ni-O formation), energy dispersive spectroscopy (showed specified elemental nature) and scanning electron microscopy (showed rhombohedral agglomerated shape). BBS-NiONPs were exposed to multiple in vitro bioactivities to ascertain their beneficial biological applications. They exhibited strong antioxidant activities: total antioxidant capacity (64.77%) and 2, 2-diphenyl-1-picrylhydrazyl (71.48%); and cytotoxic potential: Brine shrimp cytotoxicity assay with IC50 (10.40 µg/mL). BBS-NiONPs restricted the bacterial and fungal pathogenic growths at 1000, 500 and 100 µg/mL. Additionally, BBS-NiONPs showed stimulatory efficacy by enhancing seed germination rate and seedling growth at 31.25 and 62.5 µg/mL. In aggregate, BBS extract has a potent antioxidant activity which makes the green biosynthesis of NiONPs easy, economical and safe. The biochemical potential of BBS-NiONPs can be useful in various biomedical and agricultural fields.


Asunto(s)
Berberis/metabolismo , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Antibacterianos/química , Antioxidantes/química , Bacterias , Berberis/fisiología , Pruebas de Sensibilidad Microbiana , Nanotecnología/métodos , Níquel/química , Tamaño de la Partícula , Fitoquímicos/química , Extractos Vegetales/química , Espectrometría por Rayos X/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
9.
Microsc Res Tech ; 84(1): 101-110, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32860281

RESUMEN

Citrus is the leading fruit crop of Pakistan and exported to different parts of the world. Due to suitable weather condition, this crop is affected by different biotic factors which seriously deteriorate its quality and quantity. During the months of November 2018 to January 2019, citrus brown rot symptoms were recurrently observed on sweet oranges in National Agricultural Research Centre (NARC), Islamabad. Causal agent of citrus brown rot was isolated, characterized, and identified as Fusarium oxysporum. For environment-friendly control of this disease, leaf extract of Azadirachta indica was used for the green synthesis of iron oxide (Fe2 O3 ) nanoparticles. These nanoparticles were characterized before their application for disease control. Fourier transform infrared spectroscopy (FTIR) of these synthesized nanoparticles described the presence of stabilizing and reducing compounds like alcohol, phenol, carboxylic acid, and alkaline and aromatic compounds. X-Ray diffraction (XRD) analysis revealed the crystalline nature and size (24 nm) of these nanoparticles. Energy dispersive X-Ray (EDX) analysis elaborated the presence of major elements in the samples. Scanning electron microscopy (SEM) confirmed the spinal shaped morphology of prepared nanoparticles. Successfully synthesized nanoparticles were evaluated for their antifungal potential. Different concentrations of Fe2 O3 nanoparticles were used and maximum mycelial inhibition was observed at 1.0 mg/ml concentration. On the basis of these findings, it could be concluded that Fe2 O3 nanoparticles, synthesized in the leaf extract of A. indica, can be successfully used for the control of brown rot of sweet oranges.


Asunto(s)
Citrus , Nanopartículas del Metal , Nanopartículas , Antibacterianos , Fusarium , Microscopía Electrónica de Rastreo , Extractos Vegetales/farmacología , Hojas de la Planta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
Bioorg Chem ; 79: 293-300, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29793142

RESUMEN

Aryl pyrazoles are well recognized class of heterocyclic compounds found in several commercially available drugs. Owing to their significance in medicinal chemistry, in this current account we have synthesized a series of suitably substituted aryl pyrazole by employing Suzuki cross-coupling reaction. All compounds were evaluated for inhibition of mushroom tyrosinase enzyme both in vitro and in silico. Compound 3f (IC50 = 1.568 ±â€¯0.01 µM) showed relatively better potential compared to reference kojic acid (IC50 = 16.051 ±â€¯1.27 µM). A comparative docking studies showed that compound 3f have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-6.90 kcal/mol) as compared to Kojic acid. The 4-methoxy group in compound 3f shows 100% interaction with Cu. Compound 3f displayed hydrogen binding interaction with His61 and His94 at distance of 1.71 and 1.74 Šwhich might be responsible for higher activity compared to Kojic acid.


Asunto(s)
Agaricales/enzimología , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Pirazoles/farmacología , Pironas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Cinética , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Pirazoles/síntesis química , Pirazoles/química , Pironas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...