Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38475005

RESUMEN

In this work, we present a compact LIBS sensor developed for characterization of samples on a crime scene following requirements of law enforcement agencies involved in the project. The sensor operates both in a tabletop mode, for aside measurements of swabbed materials or taken fragments, and in handheld mode where the sensor head is pointed directly on targets at the scene. The sensor head is connected via an umbilical to an instrument box that could be battery-powered and contains also a color camera for sample visualization, illumination LEDs, and pointing system for placing the target in focus. Here we describe the sensor's architecture and functionalities, the optimization of the acquisition parameters, and the results of some LIBS measurements. On nano-plotted traces at silica wafer and in optimized conditions, for most of the elements the detection limits, in term of the absolute element masses, were found to be below 10 picograms. We also show results obtained on some representative materials, like fingerprints, swabbed soil and gunshot residue, varnishes on metal, and coated plastics. The last, solid samples were used to evaluate the depth profiling capabilities of the instrument, where the recognition of all four car paint layers was achieved.

2.
Sensors (Basel) ; 22(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36366036

RESUMEN

Fast monitoring of water quality is a fundamental part of environmental management and protection, in particular, the possibility of qualitatively and quantitatively determining its contamination at levels that are dangerous for human health, fauna and flora. Among the techniques currently available, Raman spectroscopy and its variant, Surface-Enhanced Raman Spectroscopy (SERS), have several advantages, including no need for sample preparation, quick and easy operation and the ability to operate on the field. This article describes the application of the Raman and SERS technique to liquid samples contaminated with different classes of substances, including nitrates, phosphates, pesticides and their metabolites. The technique was also used for the detection of the air pollutant polycyclic aromatic hydrocarbons and, in particular, benzo(a)pyrene, considered as a reference for the carcinogenicity of the whole class of these compounds. To pre-concentrate the analytes, we applied a methodology based on the well-known coffee-ring effect, which ensures preconcentration of the analytes without any pretreatment of the sample, providing a versatile approach for fast and in-situ detection of water pollutants. The obtained results allowed us to reveal these analytes at low concentrations, close to or lower than their regulatory limits.


Asunto(s)
Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Humanos , Espectrometría Raman/métodos , Hidrocarburos Policíclicos Aromáticos/química , Benzo(a)pireno
3.
Micromachines (Basel) ; 12(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498471

RESUMEN

In this work, the results on the detection and identification of Bacillus thuringiensis (Bt) cells by using surface-enhanced Raman spectroscopy (SERS) are presented. Bt has been chosen as a harmless surrogate of the pathogen Bacillus anthracis (Ba) responsible for the deadly Anthrax disease, because of their genetic similarities. Drops of 200 µL of Bt suspensions, with concentrations 102 CFU/mL, 104 CFU/mL, 106 CFU/mL, were deposited on a SERS chip and sampled after water evaporation. To minimize the contribution to the SERS data given by naturally occurring interferents present in a real scenario, the SERS chip was functionalized with specific phage receptors BtCS33, that bind Bt (or Ba) cells to the SERS surface and allow to rinse the chip removing unwanted contaminants. Different chemometric approaches were applied to the SERS data to classify spectra from Bt-contaminated and uncontaminated areas of the chip: Principal Component Regression (PCR), Partial Least Squares Regression (PLSR) and Data Driven Soft Independent Modeling of Class Analogy (DD-SIMCA). The first two was tested and trained by using data from both contaminated and un-contaminated chips, the last was trained by using data from un-contaminated chips only and tested with all the available data. All of them were able to correctly classify the SERS spectra with great accuracy, the last being suitable for an automated recognition procedure.

4.
Anal Bioanal Chem ; 412(27): 7659-7667, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32875368

RESUMEN

The research and the individuation of tumour markers in biological fluids are currently one of the main tools to support diagnosis, prognosis, and monitoring of the therapeutic response in oncology. Although the identification of tumour markers in asymptomatic patients is crucial for early diagnosis, its application is still limited by the relatively low sensitivity and the complexity of existing methods (i.e. ELISA, mass spectrometry). We developed an easy, fast, and ultrasensitive surface-enhanced Raman scattering (SERS)-based system, for the detection and quantitation of the LGALS3BP (90K) biomarker that was used as a model, based on the development of antibody-functionalized nanostructured gold surfaces. The detection system was effective for the ultrasensitive detection and characterization of samples of different biochemical compositions. In conclusion, this work could provide the foundation for the development of a medical diagnostic device with the highest predictive power when compared with the methods currently used in cancer diagnostics.


Asunto(s)
Anticuerpos Inmovilizados/química , Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Nanoestructuras/química , Espectrometría Raman/instrumentación , Antígenos de Neoplasias/análisis , Biomarcadores de Tumor/análisis , Diseño de Equipo , Oro/química , Humanos , Límite de Detección , Neoplasias/sangre , Espectrometría Raman/métodos
5.
Sensors (Basel) ; 19(19)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581543

RESUMEN

Here, we describe an innovative Integrated Laser Sensor (ILS) that combines four spectroscopic techniques and two vision systems into a unique, transportable device. The instrument performs Raman and Laser-Induced Fluorescence (LIF) spectroscopy excited at 355 nm and Laser-Induced Breakdown Spectroscopy (LIBS) excited at 1064 nm, and it also detects Laser Scattering (LS) from the target under illumination at 650 nm. The combination of these techniques supplies information about: material change from one scanning point to another, the presence of surface contaminants, and the molecular and elemental composition of top target layers. Switching between the spectroscopic techniques and the laser wavelengths is fully automatic. The instrument is equipped with an autofocus, and it performs scanning with a chosen grid density over an interactively-selected target area. Alternative to the spectroscopic measurements, it is possible to switch the instrument to a high magnification target viewing. The working distances tested until now are between 8.5 and 30 m. The instrument is self-powered and remotely controlled via wireless communication. The ILS has been fully developed at ENEA for security applications, and it was successfully tested in two outdoor campaigns where an automatic recognition of areas containing explosives in traces had been implemented. The strategies for the identification of nitro-compounds placed on various substrates as fingerprints and the results obtained at a working distance of 10 m are discussed in the following.

6.
Sensors (Basel) ; 16(1)2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26703613

RESUMEN

A new Raman-based apparatus for proximal detection of energetic materials on people, was developed and tested for the first time. All the optical and optoelectronics components of the apparatus, as well as their optical matching, were carefully chosen and designed to respect international eye-safety regulations. In this way, the apparatus is suitable for civil applications on people in public areas such as airports and metro or railway stations. The acquisition software performs the data analysis in real-time to provide a fast response to the operator. Moreover, it allows for deployment of the apparatus either as a stand alone device or as part of a more sophisticated warning system architecture made up of several sensors. Using polyamide as substrate, the apparatus was able to detect surface densities of ammonium nitrate (AN), 2-methyl-1,3,5-trinitrobenzene (TNT), 3-nitrooxy-2,2-bis(nitrooxymethyl)propyl] nitrate (PETN) and urea nitrate (UN) in the range of 100-1000 µg/cm² at a distance of 6.4 m using each time a single laser pulse of 3 mJ/cm². The limit of detection calculated for AN is 289 µg/cm². AN and UN provided the highest percentages of true positives (>82% for surface densities of 100-400 µg/cm² and fingerprints) followed by TNT and PETN (17%-70% for surface densities of 400-1000 µg/cm² and fingerprints).


Asunto(s)
Monitoreo del Ambiente/métodos , Sustancias Explosivas/análisis , Rayos Láser , Espectrometría Raman/métodos , Defensa Civil , Monitoreo del Ambiente/instrumentación , Humanos , Terrorismo/prevención & control
7.
Talanta ; 144: 420-6, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452842

RESUMEN

We report the results of proximal Raman investigations at a distance of 7 m, to detect traces of explosives (from 0.1 to 0.8 mg/cm(2)) on common clothes with a new eye-safe apparatus. The instrument excites the target with a single laser shot of few ns (10(-9)s) in the UV range (laser wavelength 266 nm) detecting energetic materials like Pentaerythritol tetranitrate (PETN), Trinitrotoluene (TNT), Urea Nitrate (UN) and Ammonium Nitrate (AN). Samples were prepared using a piezoelectric-controlled plotter device to realize well-calibrated amounts of explosives on several cm(2). Common fabrics and tissues such as polyester, polyamide and leather were used as substrates, representative of base-materials used in the production of jackets or coats. Other samples were prepared by touching the substrate with a silicon finger contaminated with explosives, to simulate a spot left by contaminated hands on a jacket or bag during the preparation of an improvised explosive device (IED) by a terrorist. The observed Raman signals showed some peculiar molecular bands of the analyzed compounds, allowing us to identify and discriminate them with high sensitivity and selectivity, also in presence of the interfering signal from the underlying fabric. A dedicated algorithm was developed to remove noise and fluorescence background from the single laser shot spectra and an automatic spectral recognition procedure was also implemented, evaluating the intensity of the characteristic Raman bands of each explosive and allowing their automatic classification. Principal component analysis (PCA) was used to show the discrimination potentialities of the apparatus on different sets of explosives and to highlight possible criticalities in the detection. Receiver operating characteristic (ROC) curves were used to discuss and quantify the sensitivity and the selectivity of the proposed recognition procedure. To our knowledge the developed device is at the highest sensitivity nowadays achievable in the field of eye-safe, Raman devices for proximal detection.


Asunto(s)
Sustancias Explosivas/análisis , Ojo , Análisis de Componente Principal , Curva ROC , Seguridad , Espectrometría Raman/instrumentación , Rayos Ultravioleta , Límite de Detección
8.
Appl Opt ; 48(31): G38-43, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19881643

RESUMEN

We study the recording of permanent Bragg gratings on surface-colored lithium fluoride (LiF) crystals by using the interference pattern of a continuous-wave UV argon-ion laser operating at 244 nm. Gratings with spatial periodicity ranging from 400 to 1000 nm are written by using a phase-mask interferometer and are stable for several months after the writing process. Absorption and photoluminescence spectra show the bleaching of primary F and F -aggregate laser-active color centers as a result of the process. Confocal microscopy is used to determine the pitch and the profile of the fluorescent gratings. The UV laser-induced optical bleaching in highly colored LiF ultrathin layers is responsible for the periodic spatial modulation of absorption and photoemission properties that characterize the gratings. In the colored surface layer, a reduction of as much as 50% of the initial color-center-induced refractive-index increase has been estimated in the bleached areas.

9.
Microsc Res Tech ; 71(12): 839-48, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18785247

RESUMEN

A lithium fluoride (LiF) crystal has been utilized as a new soft X-ray detector to image different biological samples at a high spatial resolution. This new type of image detector for X-ray microscopy has many interesting properties: high resolution (nanometer scale), permanent storage of images, the ability to clear the image and reuse the LiF crystal, and high contrast with greater dynamic range. Cells of the unicellular green algae Chlamydomonas dysosmos and Chlorella sorokiniana, and pollen grains of Olea europea have been used as biological materials for imaging. The biological samples were imaged on LiF crystals by using the soft X-ray contact microscopy and contact micro-radiography techniques. The laser plasma soft X-ray source was generated using a Nd:YAG/Glass laser focused on a solid target. The X-ray energy range for image acquisition was in the water-window spectral range for single shot contact microscopy of very thin biological samples (single cells) and around 1 keV for multishots microradiography. The main aim of this article is to highlight the possibility of using a LiF crystal as a detector for the biological imaging using soft X-ray radiation and to demonstrate its ability to visualize the microstructure within living cells.


Asunto(s)
Chlamydomonas/citología , Chlorella/citología , Fluoruros , Compuestos de Litio , Microscopía/métodos , Olea/citología , Polen/citología , Rayos X , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...