Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124135

RESUMEN

Systemic plant protection products, such as neonicotinoids (NIs), are capable of being translocated throughout a plant. Although NIs are less toxic to mammals, fish, and birds, their impact on microbial and non-target insects is of concern. This study investigates the uptake, translocation, and accumulation of the NI, imidacloprid (IMI), in romaine lettuce (Lactuca sativa L. var. longipolia). Exposing 15-day-old seedlings to "10 mg/L" of IMI, the effects on microbial communities in both cultivated (CS) and non-cultivated soil (NCS) were studied along with IMI translocation within plant tissues. The concentrations of IMI in soil varied temporally and between soil types after initial application, with a decrease from 2.0 and 7.7 mg/kg on the first day of sampling to 0.5 and 2.6 mg/kg on the final sampling day (day 35) for CS and NCS, respectively. The half-life of IMI soil was 10.7 and 72.5 days in CS and NCS, respectively, indicating that IMI degraded more quickly in CS, possibly due to smaller grain size, aeration, microbial degradation, and water flow. The accumulated concentrations of IMI in lettuce tissues ranged from 12.4 ± 0.2 and 18.7± 0.9 mg/kg in CS and NCS, respectively. The highest concentration of IMI was found in the shoots, followed by the roots, whereas the soil showed the lowest IMI residuals at the end of the trial. Soil bacteria and fungi were altered by the application of IMI, with a lower abundance index within the bacterial community, indicating a negative impact on the distribution of bacteria in the soil.

2.
PLoS One ; 19(6): e0302135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861530

RESUMEN

Soilless agriculture is acknowledged worldwide because it uses organic leftovers as a means of supporting intensive and efficient plant production. However, the quality of potting media deteriorates because of lower nutrient content and excessive shrinkage of most organic materials. A current study was undertaken to identify the optimal blend of locally available organic materials with desirable qualities for use as potting media. Therefore, different ingredients, viz., Pinus roxburghii needles, sugarcane bagasse, and farmyard manure were used alone or in combination as potting media to test their suitability by growing spinach as a test crop. Results showed that an increase in Pinus roxburghii needles and sugarcane bagasse decreased medium pH and electrical conductivity. Higher pH and electrical conductivity were recorded for the treatments having a higher farmyard manure ratio (≥50%) in combination. Except for pine needles 100%, pH and electrical conductivity were in the recommended range. The growth attributes include, leaves plant-1, shoot length, fresh- and dry shoot weight along with plant macronutrients (nitrogen, phosphorous, and potassium) and micronutrients (iron, copper, manganese, and zinc) content were higher in treatment pine needles 50%+farmyard manure 50% followed by pine needles 25%+farmyard manure 50%+sugarcane bagasse 25%. Moreover, the particular treatment of pine needles 50%+farmyard manure 50% exhibited the highest concentrations of macro- (nitrogen, phosphorus, and potassium) as well as micronutrients (iron, copper, manganese, and zinc) in the potting media following the harvest. This study highlights the potential of utilizing agro-industrial litter/waste as a soilless growing medium for spinach production under greenhouse conditions. When employed in appropriate proportions, this approach not only addresses disposal concerns but also proves effective for sustainable cultivation. Further research is needed to investigate the use of these wastes as potting media by mixing various particle-size ingredients.


Asunto(s)
Estiércol , Pinus , Saccharum , Estiércol/análisis , Saccharum/crecimiento & desarrollo , Saccharum/química , Pinus/crecimiento & desarrollo , Celulosa , Verduras/crecimiento & desarrollo , Verduras/química , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Concentración de Iones de Hidrógeno , Conductividad Eléctrica , Agricultura/métodos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/química , Suelo/química , Nitrógeno/análisis
3.
Sci Total Environ ; 928: 172265, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621534

RESUMEN

Extensive unforested sandy areas on the margins of floodplains and riverbeds, formed by dunes, barchans, and accumulation berms, are a ubiquitous feature across northern Eurasia and Alaska. These dynamic landscapes, which bear witness to the complex Holocene and modern climatic fluctuations, provide a unique opportunity to study ecosystem evolution. Within this heterogeneous assemblage, active dunes, characterized by their very sparse plant communities, contrast sharply with the surrounding taiga (boreal) forests common for the stabilized dunes. This juxtaposition makes these regions to natural laboratories to study vegetation succession and soil development. Through a comprehensive analysis of climate, geomorphology, vegetation, soil properties, and microbiome composition, we elucidate the intricacies of cyclic and linear ecosystem evolution within a representative sandy area located along the lower Nadym River in Siberia, approximately 100 km south of the Arctic Circle. The shift in the Holocene wind regime and the slow development of vegetation under harsh climatic conditions promoted cyclical ecosystem dynamics that precluded the attainment of a steady state. This cyclical trajectory is exemplified by Arenosols, characterized by extremely sparse vegetation and undifferentiated horizons. Conversely, accelerated vegetation growth within wind-protected enclaves on marginally stabilized soils facilitated sand stabilization and subsequent pedogenesis towards Podzols. Based on soil acidification due to litter input (mainly needles, lichens, and mosses) and the succession of microbial communities, we investigated constraints on carbon and nutrient availability during the initial stages of pedogenesis. In summary, the comprehensive study of initial ecosystem development on sand dunes within taiga forests has facilitated the elucidation of both common phases and spatiotemporal dynamics of vegetation and soil succession. This analysis has further clarified the existence of both cyclic and linear trajectories within the successional processes of ecosystem evolution.


Asunto(s)
Ecosistema , Suelo , Taiga , Siberia , Suelo/química , Arena , Monitoreo del Ambiente , Microbiota , Microbiología del Suelo
4.
Sci Rep ; 13(1): 19064, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925477

RESUMEN

Date palm stones are regarded as possible alternatives to activated carbon (AC) precursors with high potential for various environmental applications. In this research study, date palm stones derived activated carbon (DPSAC) was used as adsorbent for removing toxic remazol brilliant blue R (RBBR). The synthesis of DPSAC involved a chemical treatment using KOH and NaOH (1:1). Characterization of DPSAC revealed that it exhibited a BET surface area of 715.30 m2/g, Langmuir surface area of 1061.93 m2/g, total pore volume of 0.39 cm3/g, and average pore diameter of 2.15 nm. Adsorption uptake of RBBR increased (from 24.54 to 248.54 mg/g), whereas the removal percentage decreased (from 98.16 to 82.85%) when the initial RBBR concentration increased (from 25 to 300 mg/L). The adsorption process performed best under acidic conditions (pH 3), with an RBBR uptake of 98.33 mg/g. Because of the high R2 values (0.9906 and 0.9779) and low average errors (6.24 and 13.95%), this adsorption process followed the Freundlich isotherm and pseudo-first-order (PFO) models, respectively. The Langmuir adsorption capacity (Qm) was 319.63 mg/g. Thermodynamic parameters were - 11.34 kJ/mol for ∆H° (exothermic in nature), 0.05 kJ/mol K for ∆S° (increasing randomness level at solid-liquid interface), - 27.37 kJ/mol for ∆G° (spontaneous), and 6.84 kJ/mol for Ea (controlled by physisorption).

6.
Toxics ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36850971

RESUMEN

Biochar's agricultural and environmental benefits have been widely demonstrated; however, it may cause environmental contamination if it contains large amounts of pollutants such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). Therefore, this study aimed to assess the contents of PAHs and HM in a range of biochars generated from different sources and pyrolysis temperatures. A range of feedstock was converted to biochar, including sewage sludge (SS), olive mill pomace (OP), feather meal (FM), soft offal meal (CSM), chicken manure (CM), and date palm residues (DPR). Each feedstock was then pyrolyzed at three temperatures of 300, 500, or 700 °C, thereby producing a total of 18 types of biochar. These biochar products were analyzed for 16 PAHs and eight metals (Cr, Mn, Fe, Ni, Cu, Zn, Cd, and Pb). Benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo(a)pyrene were significantly greater in the biochar produced at 700 °C than in that produced at 300 °C, especially for CM. The concentrations of dibenz(a,h)anthracene were significantly lower at 700 °C but greater at 500 °C and 300 °C in DPR. Increasing the pyrolysis temperature from 300 to 700 °C significantly increased the concentrations of metals, including Cr in SS and OP; Mn in CM; and Fe, Ni, Cu, and Zn in SS. However, the concentration of Cd was significantly lower in the SS when biochar was produced at 700 °C than at 500 or 300 °C. The type of feedstock used and the pyrolysis temperature are key factors influencing the contents of PAHs and HMs in biochar, both of which need to be considered during the production and use of biochar. Further investigations are recommended to establish the relationships between pyrolysis temperature and types of feedstock and the formation of PAH or the concentrations of metals. Monitoring the concentrations of PAHs and HMs before applying biochar to soil is also recommended.

7.
ACS Omega ; 7(50): 46079-46089, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570315

RESUMEN

Remazol Brilliant Blue R (RBBR) is a common dye used in the industry, and its presence in wastewater and discharge into the environment can create a serious concern for the ecosystem and human health. Activated carbon produced from crop residues has emerged as a promising technique for removing contaminants from wastewater. In this study, leaf sheath date palm fiber-based activated carbon (LSDAC) was synthesized via phosphoric acid, H3PO4, treatment, followed by a microwave-induced carbonization process. The produced LSDAC was found to have a BET surface area of 604.61 m2/g, a Langmuir surface area of 922.05 m2/g, a total pore volume of 0.35 cm3/g, and an average pore size of 2.75 nm. The highest removal of RBBR was achieved at a solution pH of 3 (92.56 mg/g) and a solution temperature of 50 °C (90.37 mg/g). Adsorption of RBBR onto LSDAC followed the Langmuir isotherm model with a maximum monolayer capacity, Q m, of 243.43 mg/g, whereas in terms of kinetics, this adsorption system was best described by the pseudo-first-order (PFO) model. The calculated thermodynamic parameters ΔH°, ΔS°, ΔG°, and Arrhenius activation energy, E a, were 4.71 kJ/mol, 0.10 kJ/mol·K, -26.25 kJ/mol, and 5.88 kJ/mol, respectively, indicating that the adsorption of RBBR onto LSDAC was endothermic in nature, exhibited increased randomness at the solid-liquid interface, and was spontaneous and controlled by physisorption.

8.
Saudi J Biol Sci ; 28(12): 7491-7498, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34867054

RESUMEN

Organic residues are an important factor that directly affects fruiting tree seedlings' health at earlier stages. It provides a suitable environment for seedling growth by providing better nutrient ions, water, and aeration. However, low organic contents and high shrinkage of most organic materials mostly deteriorate ideal potting media characteristics. Low aeration, high water, and nutrients leaching decrease seedling growth and cause a significant loss of valuable resources. That is why the current study was conducted to screen out the best indigenous materials based on particle size to produce good characteristics bearing potting media. For that, eight different ingredients, i.e., "sugarcane", "coconut coir", "wheat straw", "rice straw", "corn cob", "leaf litter", "farmyard manure", and "sunflower heads" were collected. Initially, all the materials were air-dried and processes as per requirement. After grinding, three particles size (fine = < 2 mm, medium = 3 mm and coarse = 5 mm) were separated by sieving. Results showed that decreasing particle size in "rice straw", "corn cob", "farmyard manure," and "sunflower head" decreased leachate pH. Higher EC in leachates was negatively correlated with particle size in all potting media ingredients. Except for farmyard manure, fine particle size increases the water-holding ability of potting media ingredients. However, air-filled porosity was associated with a decrease in particle size of potting media in gradients. In conclusion, farmyard manure, "sunflower heads", "leaf litter" and "sugarcane" should be incorporated while making a combination for potting media. More investigations are suggested by mixing different particle size ingredients to prepare potting media.

9.
Sci Rep ; 8(1): 3617, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483601

RESUMEN

Sequential chemical extraction and synchrotron-based XANES spectroscopy techniques were used to identify P species in two ashes before and after addition to a prairie soil. The used ashes were: meat and bone meal ash (MBMA) and dried distillers grains ash (DDGA) plus mineral P fertilizer (MP) for comparison. Soil treated with MP contained higher content of resin-Pi and NaHCO3-Pi followed by DDGA and MBMA. The MBMA amended soil had the highest (47%) proportion of the soil P contained in recalcitrant HCl extractable fraction, reflecting more Ca-bound P present and being formed in soil after application. Analysis of both ashes with XANES spectroscopy before application to soil revealed that MBMA had strong spectral features consistent with hydroxyapatite (Ca5(PO4)3(OH)). DDGA exhibited spectral features consistent with a mixture of several Mg and K phosphate salts rather than a single mineral species. The distinctive features in the XANES spectra of both ashes largely disappeared after amendment to the soil, suggesting transformation to different P forms in the soil after application. It is also possible that the added amount of P to the studied soil via DDGS or MBMA was small enough so that P speciation is not different from the background P level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA