Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 12(10)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023227

RESUMEN

Tomato bushy stunt virus (TBSV), the type member of the genus Tombusvirus in the family Tombusviridae is one of the best studied plant viruses. The TBSV natural and experimental host range covers a wide spectrum of plants including agricultural crops, ornamentals, vegetables and Nicotiana benthamiana. However, Arabidopsis thaliana, the well-established model organism in plant biology, genetics and plant-microbe interactions is absent from the list of known TBSV host plant species. Most of our recent knowledge of the virus life cycle has emanated from studies in Saccharomyces cerevisiae, a surrogate host for TBSV that lacks crucial plant antiviral mechanisms such as RNA interference (RNAi). Here, we identified and characterized a TBSV isolate able to infect Arabidopsis with high efficiency. We demonstrated by confocal and 3D electron microscopy that in Arabidopsis TBSV-BS3Ng replicates in association with clustered peroxisomes in which numerous spherules are induced. A dsRNA-centered immunoprecipitation analysis allowed the identification of TBSV-associated host components including DRB2 and DRB4, which perfectly localized to replication sites, and NFD2 that accumulated in larger viral factories in which peroxisomes cluster. By challenging knock-out mutants for key RNAi factors, we showed that TBSV-BS3Ng undergoes a non-canonical RNAi defensive reaction. In fact, unlike other RNA viruses described, no 22nt TBSV-derived small RNA are detected in the absence of DCL4, indicating that this virus is DCL2-insensitive. The new Arabidopsis-TBSV-BS3Ng pathosystem should provide a valuable new model for dissecting plant-virus interactions in complement to Saccharomyces cerevisiae.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Ribonucleasa III/metabolismo , Tombusvirus/aislamiento & purificación , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas , Especificidad del Huésped , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Bicatenario , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Saccharomyces cerevisiae/genética , Nicotiana/virología , Replicación Viral
2.
PLoS Pathog ; 12(8): e1005811, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27494702

RESUMEN

Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Fosfoproteínas Fosfatasas/inmunología , Inmunidad de la Planta/fisiología , Proteínas Serina-Treonina Quinasas/inmunología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , NADPH Oxidasas/genética , NADPH Oxidasas/inmunología , Fosfoproteínas Fosfatasas/genética , Fosforilación/genética , Fosforilación/inmunología , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/genética
3.
Plant Physiol ; 159(2): 798-809, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22535420

RESUMEN

Plasma membrane-resident receptor kinases (RKs) initiate signaling pathways important for plant immunity and development. In Arabidopsis (Arabidopsis thaliana), the receptor for the elicitor-active peptide epitope of bacterial flagellin, flg22, is encoded by FLAGELLIN SENSING2 (FLS2), which promotes plant immunity. Despite its relevance, the molecular components regulating FLS2-mediated signaling remain largely unknown. We show that plasma membrane ARABIDOPSIS-AUTOINHIBITED Ca(2+)-ATPase (ACA8) forms a complex with FLS2 in planta. ACA8 and its closest homolog ACA10 are required for limiting the growth of virulent bacteria. One of the earliest flg22 responses is the transient increase of cytosolic Ca(2+) ions, which is crucial for many of the well-described downstream responses (e.g. generation of reactive oxygen species and the transcriptional activation of defense-associated genes). Mutant aca8 aca10 plants show decreased flg22-induced Ca(2+) and reactive oxygen species bursts and exhibit altered transcriptional reprogramming. In particular, mitogen-activated protein kinase-dependent flg22-induced gene expression is elevated, whereas calcium-dependent protein kinase-dependent flg22-induced gene expression is reduced. These results demonstrate that the fine regulation of Ca(2+) fluxes across the plasma membrane is critical for the coordination of the downstream microbe-associated molecular pattern responses and suggest a mechanistic link between the FLS2 receptor complex and signaling kinases via the secondary messenger Ca(2+). ACA8 also interacts with other RKs such as BRI1 and CLV1 known to regulate plant development, and both aca8 and aca10 mutants show morphological phenotypes, suggesting additional roles for ACA8 and ACA10 in developmental processes. Thus, Ca(2+) ATPases appear to represent general regulatory components of RK-mediated signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , ATPasas Transportadoras de Calcio/metabolismo , Inmunidad de la Planta , Transducción de Señal , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/inmunología , Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/inmunología , Membrana Celular/enzimología , Membrana Celular/metabolismo , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Especies Reactivas de Oxígeno , Transcripción Genética
4.
Plant Mol Biol ; 69(1-2): 47-56, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18821058

RESUMEN

Glycoside hydrolase family 32 (GH32) harbors hydrolyzing and transglycosylating enzymes that are highly homologous in their primary structure. Eight amino acids dispersed along the sequence correlated with either hydrolase or glycosyltransferase activity. These were mutated in onion vacuolar invertase (acINV) according to the residue in festuca sucrose:sucrose 1-fructosyltransferase (saSST) and vice versa. acINV(W440Y) doubles transferase capacity. Reciprocally, saSST(C223N) and saSST(F362Y) double hydrolysis. SaSST(N425S) shows a hydrolyzing activity three to four times its transferase activity. Interestingly, modeling acINV and saSST according to the 3D structure of crystallized GH32 enzymes indicates that mutations saSST(N425S), acINV(W440Y), and the previously reported acINV(W161Y) reside very close together at the surface in the entrance of the active-site pocket. Residues in- and outside the sucrose-binding box determine hydrolase and transferase capabilities of GH32 enzymes. Modeling suggests that residues dispersed along the sequence identify a location for acceptor-substrate binding in the 3D structure of fructosyltransferases.


Asunto(s)
Hexosiltransferasas/metabolismo , Vacuolas/enzimología , beta-Fructofuranosidasa/metabolismo , Secuencia de Aminoácidos , Hexosiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética
5.
Physiol Plant ; 133(2): 242-53, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18346083

RESUMEN

A third fructan exohydrolase isoform (1-FEHw3) was purified from wheat stems by a combination of ammonium sulfate precipitation, ConA affinity and ion-exchange chromatography. Homogeneity of the preparation was indicated by the presence of a single band (70 kDa) after SDS-PAGE. The enzyme hydrolyzed mainly beta2-1 linkages in fructans and was inhibited by sucrose. A cDNA could be obtained after reverse transcriptase polymerase chain reaction (RT-PCR)-based strategies and screening of a cDNA library. Functionality tests of the cDNA performed after heterologous expression in the yeast Pichia pastoris showed that the encoded protein has essentially the same characteristics as the native enzyme. Homology with previously described 1-FEH isoforms from wheat was high (97% identity), and the enzyme showed minor differences to the previously published enzymes. The relative abundance of 1-FEH transcripts in different tissues was investigated by using quantitative RT-PCR.


Asunto(s)
Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Triticum/enzimología , Triticum/genética , Secuencia de Aminoácidos , Cromatografía por Intercambio Iónico , Clonación Molecular , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Hidrólisis , Datos de Secuencia Molecular , Filogenia , Pichia/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Sacarosa/farmacología
6.
Mol Plant Microbe Interact ; 20(9): 1031-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17849705

RESUMEN

Detection of potentially infectious microorganisms is essential for plant immunity. Microbial communities growing on plant surfaces are constantly monitored according to their conserved microbe-associated molecular patterns (MAMPs). In recent years, several pattern-recognition receptors, including receptor-like kinases and receptor-like proteins, and their contribution to disease resistance have been described. MAMP signaling must be carefully controlled and seems to involve receptor endocytosis. As a further surveillance layer, plants are able to specifically recognize microbial effector molecules via nucleotide-binding site leucine-rich repeat receptors (NB-LRR). A number of recent studies show that NB-LRR translocate to the nucleus in order to exert their activity. In this review, current knowledge regarding the recognition of MAMPs by surface receptors, receptor activation, signaling, and subcellular redistribution are discussed.


Asunto(s)
Bacterias/metabolismo , Membrana Celular/metabolismo , Células Vegetales , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal
7.
Plant J ; 48(2): 228-37, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17018033

RESUMEN

Fructans are fructose polymers that are synthesized from sucrose by fructosyltransferases. Fructosyltransferases are present in unrelated plant families suggesting a polyphyletic origin for their transglycosylation activity. Based on sequence comparisons and enzymatic properties, fructosyltransferases are proposed to have evolved from vacuolar invertases. Between 1% and 5% of the total activity of vacuolar invertase is transglycosylating activity. We investigated the nature of the changes that can convert a hydrolysing invertase into a transglycosylating enzyme. Remarkably, replacing 33 amino acids (amino acids 143-175) corresponding to the N-terminus of the mature onion vacuolar invertase with the corresponding region of onion fructan:fructan 6G-fructosyltransferase (6G-FFT) led to a shift in activity from hydrolysis of sucrose towards transglycosylation between two sucrose molecules. The substituted N-terminal region contains the sucrose-binding box that harbours the nucleophile involved in sucrose hydrolysis (Asp164). Subsequent research into the individual amino acids responsible for the enhanced transglycosylation activity revealed that mutations in amino acids Trp161 and Asn166, can give rise to a shift towards polymerase activity. Changing the amino acid at either of these positions in the sucrose-binding box increases the transglycosylation capacity of invertases two- to threefold compared to wild type. Combining the two mutations had an additive effect on transglycosylation ability, resulting in an approximately fourfold enhancement. The mutations generated correspond with natural variation present in the sucrose-binding boxes of vacuolar invertases and fructosyltransferases. These relatively small changes that increase the transglycosylation capacity of invertases might explain the polyphyletic origin of the fructan accumulation trait.


Asunto(s)
Fructanos/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Codón sin Sentido , Evolución Molecular , Glicosilación , Hexosiltransferasas/química , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Cebollas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , beta-Fructofuranosidasa/genética
8.
FEBS Lett ; 579(21): 4647-53, 2005 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16098522

RESUMEN

The active center of the glycoside hydrolase family 32 contains the three characteristic motifs (N/S)DPNG, RDP, and EC. We replaced the N-terminal region including the (N/S)DPNG motif of barley 6-SFT (sucrose:fructan 6-fructosyltransferase) by the corresponding region of Festuca 1-SST (sucrose:sucrose 1-fructosyltransferase). The chimeric enzyme, expressed in Pichia, retained the specificity of 6-SFT. Attempts to replace a larger piece at the N-terminus including also the RDP motif failed. A point mutation introduced in the RDP motif of 1-SST abolished enzymatic activity. Interestingly, point mutations of the EC-motif resulted in an enzyme which had lost the capability to form 1-kestose and glucose from sucrose but still accepted 1-kestose, producing fructose and sucrose as well as nystose.


Asunto(s)
Análisis Mutacional de ADN , Festuca/enzimología , Hexosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Unión , Hexosiltransferasas/química , Hexosiltransferasas/genética , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Sacarosa/metabolismo , Trisacáridos/metabolismo
9.
FEBS Lett ; 567(2-3): 214-8, 2004 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-15178325

RESUMEN

Plant fructosyltransferases are highly homologous in primary sequence and typically consist of two subunits but catalyze widely different reactions. Using functional expression in the yeast Pichia pastoris, we show that the substrate specificity of festuca sucrose:sucrose 1--beta-D-fructosyltransferase (1-SST) and barley sucrose:fructan 6--beta-D-fructosyltransferase (6-SFT) is entirely determined by the large subunit. Chimeric enzymes with the large subunit of festuca 1-SST (LSuB) and the small subunit of barley 6-SFT have the same catalytic specificity as the native festuca 1-SST and vice versa. If the LSuB is expressed alone, it does not yield a functionally active enzyme, indicating that the small subunit is nevertheless essential.


Asunto(s)
Festuca/enzimología , Hexosiltransferasas/química , Hexosiltransferasas/metabolismo , Hordeum/enzimología , Secuencias de Aminoácidos , Catálisis , Clonación Molecular , Hexosiltransferasas/genética , Cetosas/metabolismo , Mutagénesis , Oligosacáridos/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plásmidos/genética , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sacarosa/metabolismo
10.
New Phytol ; 161(3): 735-748, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33873712

RESUMEN

• Previously we have cloned sucrose: fructan-6-fructosyltransferase (6-SFT) from barley (Hordeum vulgare) and proposed that synthesis of fructans in grasses depends on the concerted action of two main enzymes: sucrose: sucrose-1-fructosyltransferase (1-SST), as in other fructan producing plants, and 6-SFT, found only in grasses. • Here we report the cloning of barley 1-SST, verifying the activity of the encoded protein by expression in Pichia pastoris. As expected, the barley 1-SST is homologous to invertases and fructosyltransferases, and in particular to barley 6-SFT. • The gene expression pattern of 1-SST and 6-SFT, along with the corresponding enzyme activities and fructan levels, were investigated in excised barley leaves subjected to a light-dark regime known to sequentially induce fructan accumulation and mobilization. The turnover of transcripts and enzyme activities of 1-SST and 6-SFT was compared, using appropriate inhibitors. • We found the 1-SST transcripts and enzymatic activity respond quickly, being subject to a rapid turnover. By contrast, the 6-SFT transcripts and enzymatic activity were found to be much more stable. The much higher responsiveness of 1-SST to regulatory processes, as compared with 6-SFT, clearly indicates that 1-SST plays the role of the pacemaker enzyme of fructan synthesis in barley leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA