Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339597

RESUMEN

This study evaluated 290 recombinant inbred lines (RILs) of the nested association mapping (NAM) population from the UK. The population derived from 24 families, where a common parent was "Paragon," one of the UK's spring wheat cultivar standards. All genotypes were tested in two regions of Kazakhstan at the Kazakh Research Institute of Agriculture and Plant Industry (KRIAPI, Almaty region, Southeast Kazakhstan, 2019-2022 years) and Alexandr Barayev Scientific-Production Center for Grain Farming (SPCGF, Shortandy, Akmola region, Northern Kazakhstan, 2019-2022 years). The studied traits consisted of plant adaptation-related traits, including heading date (HD, days), seed maturation date (SMD, days), plant height (PH, cm), and peduncle length (PL, cm). In addition, the yield per m2 was analyzed in both regions. Based on a field evaluation of the population in northern and southeastern Kazakhstan and using 10,448 polymorphic SNP (single-nucleotide polymorphism) markers, the genome-wide association study (GWAS) allowed for detecting 74 QTLs in four studied agronomic traits (HD, SMD, PH, and PL). The literature survey suggested that 16 of the 74 QTLs identified in our study had also been detected in previous QTL mapping studies and GWASs for all studied traits. The results will be used for further studies related to the adaptation and productivity of wheat in breeding projects for higher grain productivity.

2.
Plants (Basel) ; 12(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375859

RESUMEN

Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six other geographic origins using 10,746 polymorphic single-nucleotide polymorphism (SNP) markers. After applying the STRUCTURE package, we found that in terms of the most optimal K steps, samples from Kazakhstan and Kyrgyzstan were grouped together with samples from Russia, while samples from Tajikistan and Uzbekistan were grouped with samples from Afghanistan. The mean value of Nei's genetic diversity index for the germplasm from four groups from Central Asia was 0.261, which is comparable to that of the six other groups studied: Europe, Australia, the USA, Afghanistan, Turkey, and Russia. The Principal Coordinate Analysis (PCoA) showed that samples from Kyrgyzstan, Tajikistan, and Uzbekistan were close to samples from Turkey, while Kazakh accessions were located near samples from Russia. The evaluation of 10,746 SNPs in Central Asian wheat suggested that 1006 markers had opposing allele frequencies. Further assessment of the physical positions of these 1006 SNPs in the Wheat Ensembl database indicated that most of these markers are constituents of genes associated with plant stress tolerance and adaptability. Therefore, the SNP markers identified can be effectively used in regional winter wheat breeding projects for facilitating plant adaptation and stress resistance.

3.
PeerJ ; 10: e14324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389412

RESUMEN

Background: Although genome-wide association studies (GWAS) are an increasingly informative tool in the mining of new quantitative trait loci (QTLs), a classical biparental mapping approach is still a powerful, widely used method to search the unique genetic factors associated with important agronomic traits in bread wheat. Methods: In this study, a newly constructed mapping population of Pamyati Azieva (Russian Federation) × Paragon (UK), consisting of 94 recombinant inbred lines (RILs), was tested in three different regions of Kazakhstan with the purpose of QTL identification for key agronomic traits. The RILs were tested in 11 environments of two northern breeding stations (Petropavlovsk, North Kazakhstan region, and Shortandy, Aqmola region) and one southeastern station (Almalybak, Almaty region). The following eight agronomic traits were studied: heading days, seed maturation days, plant height, spike length, number of productive spikes, number of kernels per spike, thousand kernel weight, and yield per square meter. The 94 RILs of the PAxP cross were genotyped using Illumina's iSelect 20K single nucleotide polymorphism (SNP) array and resulted in the identification of 4595 polymorphic SNP markers. Results: The application of the QTL Cartographer statistical package allowed the identification of 53 stable QTLs for the studied traits. A survey of published studies related to common wheat QTL identification suggested that 28 of those 53 QTLs were presumably novel genetic factors. The SNP markers for the identified QTLs of the analyzed agronomic traits of common wheat can be efficiently applied in ongoing breeding activities in the wheat breeding community using a marker-assisted selection approach.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Kazajstán , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Pan , Polimorfismo de Nucleótido Simple/genética
4.
PeerJ ; 9: e11857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395089

RESUMEN

BACKGROUND: Bread wheat is the most important cereal in Kazakhstan, where it is grown on over 12 million hectares. One of the major constraints affecting wheat grain yield is drought due to the limited water supply. Hence, the development of drought-resistant cultivars is critical for ensuring food security in this country. Therefore, identifying quantitative trait loci (QTLs) associated with drought tolerance as an essential step in modern breeding activities, which rely on a marker-assisted selection approach. METHODS: A collection of 179 spring wheat accessions was tested under irrigated and rainfed conditions in Northern Kazakhstan over three years (2018, 2019, and 2020), during which data was collected on nine traits: heading date (HD), seed maturity date (SMD), plant height (PH), peduncle length (PL), number of productive spikes (NPS), spike length (SL), number of kernels per spike (NKS), thousand kernel weight (TKW), and kernels yield per m2 (YM2). The collection was genotyped using a 20,000 (20K) Illumina iSelect SNP array, and 8,662 polymorphic SNP markers were selected for a genome-wide association study (GWAS) to identify QTLs for targeted agronomic traits. RESULTS: Out of the total of 237 discovered QTLs, 50 were identified as being stable QTLs for irrigated and rainfed conditions in the Akmola region, Northern Kazakhstan; the identified QTLs were associated with all the studied traits except PH. The results indicate that nine QTLs for HD and 11 QTLs for SMD are presumably novel genetic factors identified in the irrigated and rainfed conditions of Northern Kazakhstan. The identified SNP markers of the QTLs for targeted traits in rainfed conditions can be applied to develop new competitive spring wheat cultivars in arid zones using a marker-assisted selection approach.

5.
PeerJ ; 9: e10733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643705

RESUMEN

BACKGROUND: The success of wheat production is largely dependent on local breeding projects that focus on the development of high-yielding cultivars with the use of novel molecular tools. One strategy for improving wheat productivity involves the deployment of diverse germplasms with a high potential yield. An important factor for achieving success involves the dissection of quantitative trait loci (QTLs) for complex agronomic traits, such as grain yield components, in targeted environments for wheat growth. METHODS: In this study, we tested the United Kingdom (UK) spring set of the doubled haploid (DH) reference population derived from the cross between two British cultivars, Avalon (winter wheat) and Cadenza (spring wheat), in the Northern, Central, and Southern regions (Karabalyk, Karaganda, Kyzylorda) of Kazakhstan over three years (2013-2015). The DH population has previously been genotyped by UK scientists using 3647 polymorphic DNA markers. The list of tested traits includes the heading time, seed maturation time, plant height, spike length, productive tillering, number of kernels per spike, number of kernels per meter, thousand kernel weight, and yield per square meter. Windows QTL Cartographer was applied for QTL mapping using the composite interval mapping method. RESULTS: In total, 83 out of 232 QTLs were identified as stable QTLs from at least two environments. A literature survey suggests that 40 QTLs had previously been reported elsewhere, indicating that this study identified 43 QTLs that are presumably novel marker-trait associations (MTA) for these environments. Hence, the phenotyping of the DH population in new environments led to the discovery of novel MTAs. The identified SNP markers associated with agronomic traits in the DH population could be successfully used in local Kazakh breeding projects for the improvement of wheat productivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA