Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 356: 120626, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518491

RESUMEN

Biomass can be used as an energy source to thermochemical conversion processes to biocrude production. However, the supply and dependence on only one biomass for biocrude production can be an obstacle due to its seasonality, availability, and logistics costs. In this way, biomass waste and agroindustrial residues can be mixture and used as feedstock to the hydrothermal co-liquefaction (co-HTL) process as an alternative to obtaining biocrude. In this sense, the present paper analyzed the biocrude yield influence of the co-HTL from a quaternary unprecedented blend of different biomasses, such as sugarcane bagasse, brewer's spent grain (BSG), sludge from a paper recycling mill (PRM), and microalgae (Chlorella vulgaris). In this way, a simplex lattice design was employed and co-HTL experiments were carried out in a 2000 mL high-pressure stirred autoclave reactor under 275 °C for 60 min, considering 15% of feedstock/water ratio. Significant effects in each feedstock and their blends were analyzed aiming to increase biocrude and biochar yield. It was found that the addition of microalgae is only significant when considered more than 50% into the blend with BSG and PRM sludge to increase biocrude yield.


Asunto(s)
Carbón Orgánico , Chlorella vulgaris , Microalgas , Saccharum , Aguas del Alcantarillado , Celulosa , Temperatura , Microalgas/química , Biomasa , Agua/química , Biocombustibles/análisis
2.
Appl Biochem Biotechnol ; 191(1): 245-257, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32173763

RESUMEN

Microalgae crops targeting biotechnological applications are conducted in photobioreactors, which allow the adjustment and control of parameters of luminosity, agitation and mixing in the cultivation medium to promote better cell growth and accumulation of metabolites. In this sense, the present work used the Taguchi method to find the best adjustment of the operational parameters of an unconventional photobioreactor denominated internally illuminated integrated photobioreactor (ILI-PBR) with LED light aiming at elevating the biomass concentration, volumetric biomass productivity, and volumetric lipid productivity of Chlorella minutissima microalgae cultivated under autotrophic regime. The effects of the factors were evaluated: illumination (blue, white and red); photoperiod (12 h light:12 h dark, 1 h light:1 h dark, and 24 h clear:0 h dark); aeration (0, 3 vvm, 0.4 vvm, and 0.5 vvm); and recirculation flow rate of cultivation medium (5 L min-1, 6.5 L min-1, and 9 L min-1) on the variable responses: biomass concentration, biomass volumetric productivity, lipid content, and volumetric lipid productivity. The use of the Taguchi method allowed the increase of biomass concentration, volumetric biomass productivity, and volumetric lipid productivity in the biomass of Chlorella minutissimain 8.6%, 42%, and 143%, respectively, with the adjustment of the operational parameters of the photobioreactor used.


Asunto(s)
Biomasa , Chlorella/crecimiento & desarrollo , Luz , Fotobiorreactores , Fotoperiodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA