Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol ; 273(2 Pt 2): R683-9, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9277555

RESUMEN

Transgenic (Tg) FVB/N mice were produced that overexpress human lipoprotein lipase (LPL) in skeletal muscle using the muscle creatine kinase promoter and enhancers. It was hypothesized that, by overexpressing LPL in muscle, high fat feeding-induced obesity would be prevented by diverting lipoprotein-derived triglyceride fatty acids away from storage in adipose tissue to oxidation in muscle. Mice were examined both at 6 wk of age before high fat (HF) feeding and at 19 wk of age after 13 wk of HF (46.1% fat) or high carbohydrate (HC) feeding (11.5% fat). At 6 wk in heterozygous Tg mice, LPL was increased 11-fold in white muscle and 2.5-fold in red muscle, but not in cardiac muscle or spleen, brain, lung, kidney, or adipose tissue. Plasma triglycerides (mg/dl) were lower in Tg mice (87 +/- 7 vs. 117 +/- 7, P < 0.0001), and glucose increased (201 +/- 9 vs. 167 +/- 8 mg/dl, P = 0.029). There were no differences in body weight between Tg and nontransgenic (nTg) mice; however, carcass lipid content (% body wt) was significantly decreased in male Tg mice at 6 wk (7.5 +/- 1.0 vs. 9.0 +/- 1.0%, P = 0.035). Body composition was not different in female Tg mice at 6 wk. Overall, when Tg mice were fed either a HC or HF diet for 13 wk, plasma triglycerides (P < 0.001) and free fatty acids (P < 0.001) were decreased, whereas plasma glucose (P = 0.01) and insulin (P = 0.05) were increased compared with nTg mice. HF feeding increased carcass lipid content twofold in both male (10.3 +/- 1.1 vs. 21.4 +/- 2.6%, HC vs. HF, P < 0.001) and female nTg mice (6.7 +/- 0.9 vs. 12.9 +/- 1.8%, P = 0.01). However, the targeted overexpression of LPL in skeletal muscle prevented HF diet-induced lipid accumulation in both Tg male (10.2 +/- 0.7 vs. 13.5 +/- 2.2%, HC vs. HF, P = NS) and female Tg mice (6.8 +/- 0.6 vs. 10.1 +/- 1.4%, P = NS). The potential to increase LPL activity in muscle by gene or drug delivery may prove to be an effective tool in preventing and/or treating obesity in humans.


Asunto(s)
Dieta , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones Transgénicos/genética , Músculo Esquelético/metabolismo , Obesidad/etiología , Obesidad/prevención & control , Alimentación Animal , Animales , Grasas de la Dieta/administración & dosificación , Femenino , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...