Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 3: e208, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23321805

RESUMEN

The pathogenesis of antipsychotic-induced disturbances of glucose homeostasis is still unclear. Increased visceral adiposity has been suggested to be a possible mediating mechanism. The aim of this study was to investigate, in an animal model, the differential effects of olanzapine and haloperidol on visceral fat deposition (using magnetic resonance imaging(MRI)) and on critical nodes of the insulin signaling pathway (liver-protein levels of IRS2 (insulin receptor substrate 2), GSK3α (glycogen synthase kinase-3α), GSK3ß, GSK3α-Ser21, GSK3ß-Ser9). To this end, we studied male Sprague-Dawley rats treated with vehicle (n=8), haloperidol (2 mg kg(-1) per day, n=8), or olanzapine (10 mg kg(-1)per day, n=8), using osmotic minipumps, for 8 weeks. The haloperidol group showed a higher percentage of visceral fat than both the olanzapine group and the vehicle group, whereas there was no difference between the olanzapine and the vehicle group. In terms of insulin signaling pathway, the olanzapine group showed significantly reduced IRS2 levels, reduced phosphorylation of GSK3α and increased phosphorylation of GSK3ß, whereas there was no difference between the haloperidol and the vehicle group. Our data suggest that different molecular pathways mediate the disturbances of glucose homeostasis induced by haloperidol and olanzapine with a direct effect of olanzapine on the insulin molecular pathway, possibly partly explaining the stronger propensity of olanzapine for adverse effects on glucose regulation when compared with haloperidol in clinical settings.


Asunto(s)
Antipsicóticos/farmacología , Benzodiazepinas/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Haloperidol/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Análisis de Varianza , Animales , Glucógeno Sintasa Quinasa 3/análisis , Proteínas Sustrato del Receptor de Insulina/análisis , Grasa Intraabdominal/metabolismo , Hígado/efectos de los fármacos , Imagen por Resonancia Magnética , Masculino , Modelos Animales , Olanzapina , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
Artículo en Inglés | MEDLINE | ID: mdl-25224896

RESUMEN

Both glucocorticoids and inflammation have been implicated in the pathogenesis of depression. There is a large body of literature indicating that hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor (GR) dysfunction are present in a significant proportion of depressed patients. There is also evidence of increased inflammatory processes in depressed populations, with higher levels of cytokines being a prominent finding - including raised levels of IL-6, and IL-1. These findings appear difficult to reconcile given the well-recognised property of glucocorticoids as prominent anti-inflammatory molecules. There are three potential solutions posed to this dilemma. Firstly, it has been argued that the glucocorticoid system and the inflammatory system exist in balance with one another and chronic stress can disrupt this balance in favour of inflammatory processes at the expense of glucocorticoid signalling. It has also been suggested that glucocorticoids have more complex actions than typically thought, and, in low levels can actually be pro-inflammatory, rather than universally anti-inflammatory. Lastly, it is possible that inflammation and glucocorticoid signalling may act on the same processes and structures without direct interaction to give rise to cumulative damage. Improved understanding of this interaction will allow further progress in determining targets for treatment.


Asunto(s)
Corticoesteroides/fisiología , Depresión/patología , Inflamación/fisiopatología , Inflamación/psicología , Sistemas Neurosecretores/fisiología , Transducción de Señal/fisiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Animales , Citocinas/fisiología , Depresión/psicología , Trastorno Depresivo/metabolismo , Humanos , Inflamación/complicaciones , Estrés Psicológico/complicaciones
4.
Mol Psychiatry ; 16(7): 738-50, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21483429

RESUMEN

Antidepressants increase adult hippocampal neurogenesis in animal models, but the underlying molecular mechanisms are unknown. In this study, we used human hippocampal progenitor cells to investigate the molecular pathways involved in the antidepressant-induced modulation of neurogenesis. Because our previous studies have shown that antidepressants regulate glucocorticoid receptor (GR) function, we specifically tested whether the GR may be involved in the effects of these drugs on neurogenesis. We found that treatment (for 3-10 days) with the antidepressant, sertraline, increased neuronal differentiation via a GR-dependent mechanism. Specifically, sertraline increased both immature, doublecortin (Dcx)-positive neuroblasts (+16%) and mature, microtubulin-associated protein-2 (MAP2)-positive neurons (+26%). This effect was abolished by the GR-antagonist, RU486. Interestingly, progenitor cell proliferation, as investigated by 5'-bromodeoxyuridine (BrdU) incorporation, was only increased when cells were co-treated with sertraline and the GR-agonist, dexamethasone, (+14%) an effect which was also abolished by RU486. Furthermore, the phosphodiesterase type 4 (PDE4)-inhibitor, rolipram, enhanced the effects of sertraline, whereas the protein kinase A (PKA)-inhibitor, H89, suppressed the effects of sertraline. Indeed, sertraline increased GR transactivation, modified GR phosphorylation and increased expression of the GR-regulated cyclin-dependent kinase-2 (CDK2) inhibitors, p27(Kip1) and p57(Kip2). In conclusion, our data suggest that the antidepressant, sertraline, increases human hippocampal neurogenesis via a GR-dependent mechanism that requires PKA signaling, GR phosphorylation and activation of a specific set of genes. Our data point toward an important role for the GR in the antidepressant-induced modulation of neurogenesis in humans.


Asunto(s)
Antidepresivos/farmacología , Hipocampo/citología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/efectos de los fármacos , Receptores de Glucocorticoides/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...