Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Langmuir ; 38(22): 6977-6983, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613431

RESUMEN

Amphipathic α-helical peptides have been reported to form discoidal particles or nanodiscs with phospholipids, in which a lipid bilayer patch is encircled by peptides. Peptide-based nanodiscs have broad applicability because of their ease of preparation, size flexibility, and structural plasticity. We previously revealed that the nanodiscs formed by apolipoprotein-A-I-derived peptide 18A showed temperature-dependent structural destabilization above the gel-to-liquid-crystalline phase transition temperature of the lipid bilayer. It has been suggested that this destabilization is due to the migration of peptides bound to the edge of the discs to the bilayer surface. In this study, we designed a peptide that could stabilize nanodisc structures against the phase transition of lipid bilayers by disulfide cross-linking of peptides. An 18A-dimer cross-linked by a proline residue, 37pA (Ac-18A-P-18A-CONH2), also showed thermal destabilization of nanodiscs like 18A. However, cross-linking the sides of the two α-helices of the cysteine-substituted analogue 37pA-C2 with disulfide bonds led to the formation of nanodiscs that were more stable to temperature changes. This stabilizing effect was mainly due to the formation of a cyclic 37pA-C2 monomer by intramolecular disulfide cross-linking. These results suggest that the lateral association of two α-helices, which is the basis of the double-belt structure, is an important factor for the implementation of stable nanodiscs. The results of this study will help in development of more stable nanoparticles with membrane proteins in the future.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolípidos , Secuencia de Aminoácidos , Disulfuros , Péptidos/química , Fosfolípidos/química , Conformación Proteica en Hélice alfa
2.
J Colloid Interface Sci ; 588: 522-530, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33429348

RESUMEN

Nanodiscs are discoidal particles in which a lipid bilayer is encircled by amphipathic molecules such as proteins, peptides, or synthetic polymers. The apolipoprotein-A-I-derived peptide 18A is known to form nanodiscs in the presence of phospholipids, but the detailed mechanism of the formation and deformation of these nanodiscs in response to changes in the surrounding environment is not well understood. Here, we investigated the temperature- and composition-dependent structural changes of 18A-phosphatidylcholine complexes using fluorescence spectroscopy, dynamic light scattering, circular dichroism, static 31P NMR, and electron microscopy. We found that the nanodiscs in fast isotropic rotational motion increased in size above the gel-to-liquid-crystalline phase transition temperature of the lipid bilayers, resulting in the formation of enlarged nanodiscs and a lamellar phase. The lamellar phase was found to be oriented along the magnetic field. Further increase in temperature induced the formation of lipid vesicles. These transformations were explained using a transition model based on the migration of the peptide from the rim of the nanodiscs to the liquid-crystalline bilayer phase. The study outcomes provide a basis for understanding the design principles of discoidal nanostructures for structural biology and nanomedicine applications.


Asunto(s)
Nanoestructuras , Fosfolípidos , Membrana Dobles de Lípidos , Conformación Molecular , Péptidos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA