Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(3): e0193940, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29547646

RESUMEN

Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Meningococicas/genética , Neisseria meningitidis/genética , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Variación Antigénica/genética , Biología Computacional/métodos , Variación Genética/genética , Humanos , Meningitis Meningocócica/inmunología , Alineación de Secuencia
2.
PLoS One ; 10(3): e0124133, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826209

RESUMEN

The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Neisseria meningitidis/metabolismo , Vitronectina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Datos de Secuencia Molecular
3.
Antimicrob Agents Chemother ; 58(10): 5775-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049258

RESUMEN

Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, ß-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.


Asunto(s)
Antibacterianos/farmacología , Burkholderia/efectos de los fármacos , Burkholderia/metabolismo , Anaerobiosis , Ceftazidima/farmacología , Farmacorresistencia Microbiana , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
4.
Res Microbiol ; 165(1): 41-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24239959

RESUMEN

Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Burkholderia/fisiología , Coenzimas/biosíntesis , Metaloproteínas/biosíntesis , Aerobiosis , Anaerobiosis , Coenzimas/genética , Regulación Bacteriana de la Expresión Génica , Metaloproteínas/genética , Cofactores de Molibdeno , Nitratos/metabolismo , Pteridinas , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...