Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 2): 046501, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14683057

RESUMEN

The time dependence of the vector and tensor polarization of a 270 MeV stored deuteron beam was measured near a depolarizing resonance, which was induced by an oscillating, longitudinal magnetic field. The distance to the resonance was varied by changing the oscillation frequency. The measured ratio of the polarization lifetimes is tau(vector)/tau(tensor)=1.9+/-0.2. Assuming that the effect of the resonance is to induce transitions between magnetic substates m(I), we find that the transition rate between neighboring states (+1 and 0 or -1 and 0) is four times higher than between the states with m(I)=+1 and -1.

2.
Phys Rev Lett ; 91(21): 214801, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-14683310

RESUMEN

We recently studied spin flipping of a 270 MeV vertically polarized deuteron beam stored in the Indiana University Cyclotron Facility Cooler Ring. We adiabatically swept an rf solenoid's frequency through an rf-induced spin resonance and observed its effect on the deuterons' vector and tensor polarizations. After optimizing the resonance crossing rate and maximizing the solenoid's voltage, we measured a vector spin-flip efficiency of 94.2%+/-0.3%. We also found striking behavior of the spin-1 tensor polarization.

3.
Phys Rev Lett ; 88(1): 014801, 2002 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-11800956

RESUMEN

We recently studied the spin-flipping efficiency of an rf-dipole magnet using a 120-MeV horizontally polarized proton beam stored in the Indiana University Cyclotron Facility Cooler Ring, which contained a nearly full Siberian snake. We flipped the spin by ramping the rf dipole's frequency through an rf-induced depolarizing resonance. By adiabatically turning on the rf dipole, we minimized the beam loss. After optimizing the frequency ramp parameters, we used 100 multiple spin flips to measure a spin-flip efficiency of 99.63+/-0.05%. This result indicates that spin flipping should be possible in very-high-energy polarized storage rings, where Siberian snakes are certainly needed and only dipole rf-flipper magnets are practical.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA