Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Acta Trop ; 224: 106111, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34450063

RESUMEN

Toxoplasma gondii is a parasite able to infect various cell types, including trophoblast cells. Studies have demonstrated that interleukin (IL)-10, transforming growth factor (TGF)-ß1 and interferon (IFN)-γ are involved in the susceptibility of BeWo trophoblast cells to T. gondii infection. Furthermore, T. gondii is able to adhere to the plasma membrane of host cells through intercellular adhesion molecule (ICAM)-1. Thus, the present study aimed to assess the role of IL-10, TGF-ß1 and IFN-γ in the expression of ICAM-1 in BeWo and HeLa cells and to analyze the role of ICAM-1 in the adhesion and invasion of T. gondii to these cells under the influence of these cytokines. For this purpose, BeWo and HeLa cells were treated or not, before and after T. gondii infection, with rIL-10, rTGF-ß1 or rIFN-γ. For the BeWo cells, rIL-10 and rTGF-ß1 favored susceptibility to infection, but only rTGF-ß1 and rIFN-γ increased ICAM-1 expression, and TNF-α release. On the other hand, rIFN-γ downregulated the expression of ICAM-1 triggered by T. gondii in HeLa cells, leading to control of the infection. Moreover, we observed that upregulation of ICAM-1, mediated by cytokine's stimulation, in BeWo and HeLa cells resulted in a high number rate of both parasite adhesion and invasion to these cells, which were strongly reduced after ICAM-1 neutralization. Likewise, the blockage of ICAM-1 molecule also impaired T. gondii infection in human villous explants. Taken together, these findings demonstrate that TGF-ß1 and IFN-γ differentially regulate ICAM-1 expression, which may interfere in the adhesion/invasion of T. gondii to BeWo and HeLa cells for modulating susceptibility to infection.


Asunto(s)
Toxoplasma , Células HeLa , Humanos , Molécula 1 de Adhesión Intercelular , Interferones , Factor de Crecimiento Transformador beta1 , Trofoblastos
2.
Front Microbiol ; 9: 906, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867817

RESUMEN

Migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays important roles in physiology, pathology, immunology and parasitology, including the control of infection by protozoa parasites such as Toxoplasma gondii. As the MIF function in congenital toxoplasmosis is not fully elucidated yet, the present study brings new insights for T. gondii infection in the absence of MIF based on pregnant C57BL/6MIF-/- mouse models. Pregnant C57BL/6MIF-/- and C57BL/6WT mice were infected with 05 cysts of T. gondii (ME49 strain) on the first day of pregnancy (dop) and were euthanized at 8 dop. Non-pregnant and non-infected females were used as control. Our results demonstrated that MIF-/- mice have more accentuated change in body weight and succumbed to infection first than their WT counterparts. Otherwise, pregnancy outcome was less destructive in MIF-/- mice compared to WT ones, and the former had an increase in the mast cell recruitment and IDO expression and consequently presented less inflammatory cytokine production. Also, MIF receptor (CD74) was upregulated in MIF-/- mice, indicating that a compensatory mechanism may be required in this model of study. The global absence of MIF was associated with attenuation of pathology in congenital toxoplasmosis, but resulted in female death probably because of uncontrolled infection. Altogether, ours results demonstrated that part of the immune response that protects a pregnant female from T. gondii infection, favors fetal damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA