Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 233: 60-72, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-27343425

RESUMEN

A multi-criteria framework combining safety, hygiene and sensorial quality was developed to investigate the possibility of extending the shelf-life and/or removing lactate by applying High Hydrostatic Pressure (HHP) in a ready-to-cook (RTC) poultry product. For this purpose, Salmonella and Listeria monocytogenes were considered as safety indicators and Escherichia coli as hygienic indicator. Predictive modeling was used to determine the influence of HHP and lactate concentration on microbial growth and survival of these indicators. To that end, probabilistic assessment exposure models developed in a previous study (Lerasle, M., Guillou, S., Simonin, H., Anthoine, V., Chéret, R., Federighi, M., Membré, J.M. 2014. Assessment of Salmonella and L. monocytogenes level in ready-to-cook poultry meat: Effect of various high pressure treatments and potassium lactate concentrations. International Journal of Food Microbiology 186, 74-83) were used for L. monocytogenes and Salmonella. Besides, for E. coli, an exposure assessment model was built by modeling data from challenge-test experiments. Finally, sensory tests and color measurements were performed to evaluate the effect of HHP on the organoleptic quality of an RTC product. Quantitative rules of decision based on safety, hygienic and organoleptic criteria were set. Hygienic and safety criteria were associated with probability to exceed maximum contamination levels of L. monocytogenes, Salmonella and E. coli at the end of the shelf-life whereas organoleptic criteria corresponded to absence of statistical difference between pressurized and unpressurized products. A tradeoff between safety and hygienic risk, color and taste, was then applied to define process and formulation enabling shelf-life extension. In the resulting operating window, one condition was experimentally assayed on naturally contaminated RTC products to validate the multi-criteria approach. As a conclusion, the framework was validated; it was possible to extend the shelf-life of an RTC poultry product containing 1.8% (w/w) lactate by one week, despite slight color alteration. This approach could be profitably implemented by food processors as a decision support tool for shelf-life determination.


Asunto(s)
Conservación de Alimentos/métodos , Productos de la Carne/microbiología , Productos Avícolas/microbiología , Animales , Seguridad de Productos para el Consumidor , Culinaria , Escherichia coli/crecimiento & desarrollo , Conservación de Alimentos/instrumentación , Almacenamiento de Alimentos , Humanos , Presión Hidrostática , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Aves de Corral , Salmonella/crecimiento & desarrollo , Gusto
2.
Int J Food Microbiol ; 186: 74-83, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25016206

RESUMEN

The objective of this study was to develop a probabilistic model in order to determine the contamination level of Salmonella and Listeria monocytogenes in ready-to-cook poultry meat, after a high pressure (HP) treatment. The model included four steps: i) Reception of raw meat materials, mincing and mixing meat, ii) Partitioning and packaging into 200-g modified atmosphere packs, iii) High pressure treatment of the meat, and iv) Storage in chilled conditions until the end of the shelf-life. The model excluded the cooking step and consumption at consumer's home as cooking practices and heating times are highly variable. The initial contamination level of Salmonella and L. monocytogenes was determined using data collected in meat primary processing plants. The effect of HP treatment and potassium lactate on microbial reduction was assessed in minced meat, using a full factorial design with three high pressure treatments (200, 350 and 500 MPa), three holding times (2, 8 and 14 min) and two potassium lactate concentrations (0 or 1.8% w/w). The inactivation curves fitted with a Weibull model highlighted that the inactivation rate was significantly dependent on the HP treatment. From the literature, it was established that Salmonella was not able to grow in the presence of lactate, under modified atmosphere and chilled conditions whereas the growth of L. monocytogenes was determined using an existing model validated in poultry (available in Seafood Spoilage and Safety Predictor software, V. 3.1). Once implemented in the Excel add-in @Risk, the model was run using Monte Carlo simulation. The probability distribution of contamination levels was determined for various scenarios. For an average scenario such as an HP treatment of 350 MPa for 8 min, of 200 g minced meat containing 1.8% lactate (pH 6.1; aw 0.96), conditioned under 50% CO2, the prevalence rate of Salmonella and L. monocytogenes, after a 20-day storage at 6 °C was estimated to be 4.1% and 7.1%, respectively. The contamination level was low considering that the product is going to be cooked by the consumer afterwards: the 99th percentile of the distribution was equal to -2.3log cfu/g for Salmonella and 0.5log cfu/g for L. monocytogenes. More generally, the model developed here from raw material reception up to the end of the shelf-life enables to recommend combinations of HP treatment and lactate formulation to guarantee an acceptable microbial concentration before cooking.


Asunto(s)
Lactatos/farmacología , Listeria monocytogenes/aislamiento & purificación , Carne/microbiología , Modelos Biológicos , Presión , Salmonella/aislamiento & purificación , Animales , Antibacterianos/farmacología , Simulación por Computador , Culinaria , Manipulación de Alimentos/normas , Listeria monocytogenes/efectos de los fármacos , Aves de Corral , Salmonella/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...