Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38793521

RESUMEN

This paper brings a new insight into understanding the influence of macrocapsules in packing systems, which can be useful in designing the inert structure of self-healing concrete. A variety of tubular macrocapsules, in terms of types and sizes, was used to assess the capsules' effect in the packing, together with various aggregate types and fractions. The voids ratios (U) of aggregate mixtures were evaluated experimentally and compared with the prediction via the particle packing model of Dewar. The packing of coarse particles was found to be considerably affected by the presence of macrocapsules, while no capsules' effect on the packing of fine particles was attained. A higher capsule dosage and capsule aspect ratio led to a higher voids ratio. In the formulation of the inert structure, the packing disturbance due to capsules can be minimised by increasing the content of fine aggregates over coarse aggregates. Dewar's model showed a good compatibility with experimental results in the absence of capsules. However, the model needed to be upgraded for the introduction of tubular macrocapsules. Accordingly, the effect of macrocapsules was extensively analysed and a 'U model' for capsules (with some limitations) was finally proposed, offering a high predicting accuracy.

2.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475260

RESUMEN

This study delves into the rheological and mechanical properties of a 3D-printable composite solid propellant with 80% wt solids loading. Polybutadiene is used as a binder with ammonium sulfate, which is added as an inert replacement for the ammonium perchlorate oxidizer. Further additives are introduced to allow for UV curing. An in-house illumination system made of four UV-A LEDs (385 nm) is employed to cure the resulting slurry. Rheological and mechanical tests are conducted to evaluate the viscosity, ultimate tensile strength and strain, and compression behavior. Viscosity tests are performed for both pure resin and complete propellant composition. A viscosity reduction factor is obtained for the tested formulations when pre-heating slurry. Uniaxial tensile and compression tests reveal that the mechanical properties are consistent with previous research. Results emphasize the critical role of temperature and solid loading percentage. Pre-heating resin composites may grant a proper viscosity reduction while keeping mechanical properties in the applicability range. Overall, these findings pave the way for the development of a 3D printer prototype for composite solid propellants.

3.
Polymers (Basel) ; 15(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050247

RESUMEN

Composite solid propellants have used cast molding production technology for many decades, with intrinsic limitations on production flexibility, promptness, and grain geometry, as well as environmental implications on toxicity and global carbon footprint. This traditional method involves the use of toxic chemicals, has a long processing time, requires high temperature, and the products have limited geometries. To overcome those issues, different photo-curable resins have been evaluated as possible matrices. In fact, the UV-curing process is fast and has low energy consumption. The photocuring reaction parameters of six different pristine formulations were evaluated by Fourier transform infrared spectroscopy analysis. After finding the optimal curing parameters, different composites were prepared by adding 75 or 80 wt% ammonium sulfate particles used as an inert replacement for the oxidant. The thermomechanical properties and thermal resistance of the UV-cured composites were characterized via dynamic thermal-mechanical and thermogravimetric analysis. Subsequently, the mechanical properties of the inert propellants were investigated by tensile tests. The most promising resin systems for the production of solid rocket propellants were then 3D printed by an in-house developed illumination system and the obtained object micro-structure was evaluated by X-ray computed tomography.

4.
Polymers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960936

RESUMEN

Cement composites (CC) are among the composites most widely used in the construction industry, such as a durable waterproof and fire-resistant concrete layer, slope protection, and application in retaining wall structures. The use of 3D fabric embedded in the cement media can improve the mechanical properties of the composites. The use of calcium aluminate cement (CAC) can accelerate the production process of the CC and further contribute to improving the mechanical properties of the cement media. The purpose of this study is to promote the use of these cementitious composites by deepening the knowledge of their tensile properties and investigating the factors that may affect them. Therefore, 270 specimens (three types of stitch structure, two directions of the fabric, three water temperature values, five curing ages, with three repetitions) were made, and the tensile properties, absorbed energy, and the inversion effects were evaluated. The results showed that the curing conditions of the reinforced cementitious composite in water with temperature values of 7, 23, and 50 °C affect the tensile behavior. The tensile strength of the CCs cured in water with a temperature of 23 °C had the highest tensile strength, while 7 and 50 °C produced a lower tensile strength. The inversion effect has been observed in CC at 23 °C between 7 and 28 days, while this effect has not occurred in other curing temperature values. By examining three commercial types of stitches in fabrics and the performance of the reinforced cementitious composites in the warp direction, it was found that the structure of the "Tuck Stitch" has higher tensile strength and absorbed energy compared to "Knit stitch" and "Miss Stitch". The tensile strength and fracture energy of the CC reinforced with "Tuck Stitch" fabric in the warp direction, by curing in 23 °C water for 7 days, were found to be 2.81 MPa and 1.65 × 103 KJ/m3, respectively. These results may be helpful in selecting the design and curing parameters for the purposes of maximizing the tensile properties of textile CAC composites.

5.
Materials (Basel) ; 14(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34771906

RESUMEN

Biocompatible and biodegradable polymers represent the future in the manufacturing of medical implantable solutions. As of today, these are generally manufactured with metallic components which cannot be naturally absorbed within the human body. This requires performing an additional surgical procedure to remove the remnants after complete rehabilitation or to leave the devices in situ indefinitely. Nevertheless, the biomaterials used for this purpose must satisfy well-defined mechanical requirements. These are difficult to ascertain at the design phase since they depend not only on their physicochemical properties but also on the specific manufacturing methods used for the target application. Therefore, this research was focused on establishing the effects of the manufacturing methods on both the mechanical properties and the thermal behavior of a medical-grade copolymer blend. Specifically, Injection and Compression Molding were considered. A Poly(L-lactide-co-D,L-lactide)/Poly(L-lactide-co-ε-caprolactone) blend was considered for this investigation, with a ratio of 50/50 (w/w), aimed at the manufacturing of implantable devices for tendon repair. Interesting results were obtained.

6.
Materials (Basel) ; 14(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920620

RESUMEN

Self-healing concrete has the potential to optimise traditional design approaches; however, commercial uptake requires the ability to harmonize against standardized frameworks. Within EU SARCOS COST Action, different interlaboratory tests were executed on different self-healing techniques. This paper reports on the evaluation of the effectiveness of proposed experimental methodologies suited for self-healing concrete with expansive mineral additions. Concrete prisms and discs with MgO-based healing agents were produced and precracked. Water absorption and water flow tests were executed over a healing period spanning 6 months to assess the sealing efficiency, and the crack width reduction with time was monitored. High variability was reported for both reference (REF) and healing-addition (ADD) series affecting the reproducibility of cracking. However, within each lab, the crack width creation was repeatable. ADD reported larger crack widths. The latter influenced the observed healing making direct comparisons across labs prone to errors. Water absorption tests highlighted were susceptible to application errors. Concurrently, the potential of water flow tests as a facile method for assessment of healing performance was shown across all labs. Overall, the importance of repeatability and reproducibility of testing methods is highlighted in providing a sound basis for incorporation of self-healing concepts in practical applications.

7.
Sci Technol Adv Mater ; 21(1): 661-682, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-33061839

RESUMEN

Development and commercialization of self-healing concrete is hampered due to a lack of standardized test methods. Six inter-laboratory testing programs are being executed by the EU COST action SARCOS, each focusing on test methods for a specific self-healing technique. This paper reports on the comparison of tests for mortar and concrete specimens with polyurethane encapsulated in glass macrocapsules. First, the pre-cracking method was analysed: mortar specimens were cracked in a three-point bending test followed by an active crack width control technique to restrain the crack width up to a predefined value, while the concrete specimens were cracked in a three-point bending setup with a displacement-controlled loading system. Microscopic measurements showed that with the application of the active control technique almost all crack widths were within a narrow predefined range. Conversely, for the concrete specimens the variation on the crack width was higher. After pre-cracking, the self-healing effect was characterized via durability tests: the mortar specimens were tested in a water permeability test and the spread of the healing agent on the crack surfaces was determined, while the concrete specimens were subjected to two capillary water absorption tests, executed with a different type of waterproofing applied on the zone around the crack. The quality of the waterproofing was found to be important, as different results were obtained in each absorption test. For the permeability test, 4 out of 6 labs obtained a comparable flow rate for the reference specimens, yet all 6 labs obtained comparable sealing efficiencies, highlighting the potential for further standardization.

8.
Materials (Basel) ; 13(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429168

RESUMEN

This review aims to provide a comprehensive assessment concerning alkali activation of natural stone wastes and minerals. In particular, the structure of the review is divided into two main sections in which the works dealing with alumino-silicate and carbonatic stones are discussed, respectively. Alumino-silicate stones are generally composed of quartz and feldspars, while carbonatic stones are mainly made of calcite and dolomite. The role of these minerals in the alkali activation process is discussed, attesting their influence in the development of the final product properties. In most of the works, authors use mineral additions only as fillers or aggregates and, in some cases, as a partial substitution of more traditional raw powders, such as metakaolin, fly ash, and granulated blast furnace slag. However, a few works in which alumino-silicate and carbonatic stone wastes are used as the main active components are discussed as well. Not only the raw materials, but also the entire alkali activation process and the curing conditions adopted in the literature studies here reviewed are systematically analyzed to improve the understanding of their effect on the physical, mechanical, and durability properties of the final products and to eventually foster the reuse of natural stone wastes for the purposes of sustainability in different applications.

9.
Materials (Basel) ; 13(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150887

RESUMEN

Capsule-based self-healing is increasingly being targeted as an effective way to improve the durability and sustainability of concrete infrastructures through the extension of their service life. Assessing the mechanical and durability behaviour of self-healing materials after damage and subsequent autonomous repair is essential to validate their possible use in real structures. In this study, self-healing mortars containing cementitious tubular capsules with a polyurethanic repairing agent were experimentally investigated. Their mechanical behaviour under both static and cyclic loading was analysed as a function of some factors related to the capsules themselves (production method, waterproof coating configuration, volume of repairing agent stored) or to the specimens (number, size and distribution of the capsules in the specimen). Their mechanical performances were quantified in terms of recovery of load-bearing capacity under static conditions and number of cycles to failure as a function of the peak force under cyclic conditions. Positive results were achieved, with a maximum load recovery index up to more than 40% and number of cycles to failure exceeding 10,000 in most cases, with peak force applied during cyclic loading at least corresponding to 70% of the estimated load-bearing capacity of the healed samples.

10.
Acta Bioeng Biomech ; 20(4): 121-134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30821278

RESUMEN

PURPOSE: One of the main problems of knee replacement is the limit of knee flexion. This study focuses on the knee implant and the patellar component currently in use in total knee arthroplasty, analyzing the influence of patellar thickness on the degree of knee flexion following surgery. METHODS: A kinematics study was performed to evaluate whether an optimal patellar thickness can be identified, which enables the maximum flexion angle to be achieved. Using TC images, a healthy model was built. On this basis, a model of a knee joint which had undergone total knee arthroplasty using a Legion PS prosthesis was constructed. Initially, the standard thickness of patellar implant (9 mm) was used to build the model; then several different patellar implant thicknesses (in the range of 5-15 mm) were analyzed. RESULTS: The results show a non-linear trend: a button thickness of less than 9 mm does not change the flexion angle, whereas a button thickness of over 9 mm results in a loss of flexion. The flexion loss is significant in the first two additions of thicknesses but negligible in the last ones. CONCLUSIONS: In the case studied, flexion reduction is not linearly proportional to the patellar thickness. The outcome of total knee arthroplasty is considered to be satisfactory with the standard patellar button. The results of this study could be used to compare the kinematics with other total prosthesis and patellar implants, and should enable the optimization of the patellar residue bone thickness to obtain deep flexion.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Articulación de la Rodilla/fisiología , Rótula/fisiología , Rango del Movimiento Articular/fisiología , Fémur/fisiología , Humanos , Prótesis de la Rodilla , Articulación Patelofemoral/fisiología
11.
Materials (Basel) ; 10(1)2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-28772405

RESUMEN

Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.

12.
Materials (Basel) ; 8(4): 1897-1923, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28788038

RESUMEN

The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT) having two different internal diameters (of 2 mm and 7.5 mm) were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mix designs used to manufacture the extruded hollow tubes, as well as the coatings applied to increase the durability of both core and shell materials are discussed. Three-point bending tests were performed on samples produced with the addition of the above-mentioned cementitious hollow tubes to verify the self-healing effectiveness of the proposed solution. Promising results were achieved, in particular when tubes with a bigger diameter were used. In this case, a substantial strength and stiffness recovery was observed, even in specimens presenting large cracks (>1 mm). The method is inexpensive and simple to scale up; however, further research is needed in view of a final optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA