Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 273: 116155, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417317

RESUMEN

Excessive exposure to manganese in the environment or workplace is strongly linked to neurodegeneration and cognitive impairment, but the precise pathogenic mechanism and preventive measures are still not fully understood. The study aimed to investigate manganese -induced oxidative damage in the nervous system from an epigenetic perspective, focusing on the H3K36ac-dependent antioxidant pathway. Additionally, it sought to examine the potential of curcumin in preventing manganese-induced oxidative damage. Histopathology and transmission electron microscopy revealed that apoptosis and necrosis of neurons and mitochondrial ultrastructure damage were observed in the striatum of manganese-exposed rats. manganese suppressed the expression of mitochondrial antioxidant genes, leading to oxidative damage in the rats' striatum and SH-SY5Y cells. With higher doses of manganese, levels of histone acetyltransferase lysine acetyltransferase 2 A (KAT2A) expression and H3K36ac level decreased. ChIP-qPCR confirmed that H3K36ac enrichment in the promoter regions of antioxidant genes SOD2, PRDX3, and TXN2 was reduced in SH-SY5Y cells after manganese exposure, leading to decreased expression of these genes. Overexpression of KAT2A confirms that it attenuates manganese-induced mitochondrial oxidative damage by regulating H3K36ac levels, which in turn controls the expression of antioxidant genes SOD2, PRDX3, and TXN2 in the manganese-exposed cell model. Furthermore, curcumin might control H3K36ac levels by influencing KAT2A expression, boosting antioxidant genes expression, and reducing manganese-induced mitochondrial oxidative damage. In conclusion, the regulation of mitochondrial oxidative stress by histone acetylation may be an important mechanism of manganese-induced neurotoxicity. This regulation could be achieved by reducing the level of H3K36ac near the promoter region of mitochondrial-associated antioxidant genes via KAT2A. Curcumin mitigates manganese-induced oxidative damage in mitochondria and plays a crucial protective role in manganese-induced oxidative injury in the nervous system.


Asunto(s)
Curcumina , Neuroblastoma , Humanos , Ratas , Animales , Manganeso/toxicidad , Manganeso/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Curcumina/farmacología , Neuroblastoma/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Histonas/metabolismo , Apoptosis , Neuronas/metabolismo , Histona Acetiltransferasas/metabolismo
2.
Environ Toxicol ; 39(3): 1140-1162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37860845

RESUMEN

Sulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti-inflammatory, and anti-apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug-disease targets, which were strongly in connection with autophagy-animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP-activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P-AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Monóxido de Carbono , Medicamentos Herbarios Chinos , Isotiocianatos , Sulfóxidos , Ratas , Animales , Simulación del Acoplamiento Molecular , Monóxido de Carbono , Proteínas Quinasas Activadas por AMP , Farmacología en Red , Encéfalo
3.
Arch Biochem Biophys ; 752: 109878, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38151197

RESUMEN

Long-term excessive exposure to manganese can impair neuronal function in the brain, but the underlying pathological mechanism remains unclear. Oxidative stress plays a central role in manganese-induced neurotoxicity. Numerous studies have established a strong link between abnormal histone acetylation levels and the onset of various diseases. Histone deacetylase inhibitors and activators, such as TSA and ITSA-1, are often used to investigate the intricate mechanisms of histone acetylation in disease. In addition, recent experiments have provided substantial evidence demonstrating that curcumin (Cur) can act as an epigenetic regulator. Given these findings, this study aims to investigate the mechanisms underlying oxidative damage in SH-SY5Y cells exposed to MnCl2·4H2O, with a particular focus on histone acetylation, and to assess the potential therapeutic efficacy of Cur. In this study, SH-SY5Y cells were exposed to manganese for 24 h, were treated with TSA or ITSA-1, and were treated with or without Cur. The results suggested that manganese exposure, which leads to increased expression of HDAC3, induced H3K27 hypoacetylation, inhibited the transcription of antioxidant genes, decreased antioxidant enzyme activities, and induced oxidative damage in cells. Pretreatment with an HDAC3 inhibitor (TSA) increased the acetylation of H3K27 and the transcription of antioxidant genes and thus slowed manganese exposure-induced cellular oxidative damage. In contrast, an HDAC3 activator (ITSA-1) partially increased manganese-induced cellular oxidative damage, while Cur prevented manganese-induced oxidative damage. In summary, these findings suggest that inhibiting H3K27ac is a possible mechanism for ameliorating manganese-induced damage to dopaminergic neurons and that Cur exerts a certain protective effect against manganese-induced damage to dopaminergic neurons.


Asunto(s)
Curcumina , Neuroblastoma , Humanos , Curcumina/farmacología , Histonas/metabolismo , Antioxidantes/farmacología , Manganeso/toxicidad , Manganeso/metabolismo , Estrés Oxidativo , Línea Celular Tumoral
4.
Front Endocrinol (Lausanne) ; 13: 917088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966071

RESUMEN

Ecdysis triggering hormone (ETH) plays an important role in molting, reproduction, and courtship behavior in insects. To investigate the potential downstream pathways and genes of ETH in Scylla paramamosain, RNA interference (RNAi) was conducted on crabs at early (D0) and late (D2) premolt substages, and the transcriptome profiles of each group were compared by RNA sequencing. Real-time quantitative polymerase chain reaction (RT-qPCR) and semiquantitative polymerase chain reaction (RT-PCR) results showed a significant knockdown of ETH at D0 stage, whereas a significant increase was shown conversely in crabs at D2 substage after the injection of dsETH. A total of 242,979 transcripts were assembled, and 44,012 unigenes were identified. Transcriptomic comparison between crabs at D2 and D0 substages showed 2,683 differentially expressed genes (DEGs); these genes were enriched in ribosome and pathways related to transcription factor complex and cell part. Twenty DEGs were identified between dsETH-injected and dsGFP-injected crabs at D0 substage; these DEGs were involved in carbohydrate metabolism, one carbon pool by folate, and chitin binding. Twenty-six DEGs were identified between dsETH-injected and dsGFP-injected crabs at D2 substage; these DEGs were involved in calcium channel inhibitor activity, fat digestion and absorption, and cardiac muscle contraction. RT-qPCR verified the differential expression of the selected genes. In conclusion, crabs at D0 substage are more active in preparing the macromolecular complex that is needed for molting. Moreover, ETH has potential roles in carbohydrate metabolism, one carbon pool by folate, and chitin binding for crabs at D0 substage, while the role of ETH turns to be involved in calcium channel inhibitor activity, fat digestion and absorption, and cardiac muscle contraction at D2 substage to facilitate the occurrence of molting. The selected DEGs provide valuable insight into the role of ETH in the regulation of crustacean molting.


Asunto(s)
Braquiuros , Muda , Animales , Braquiuros/genética , Braquiuros/metabolismo , Canales de Calcio/metabolismo , Carbono/metabolismo , Quitina/metabolismo , Ácido Fólico/metabolismo , Perfilación de la Expresión Génica , Hormonas/metabolismo , Muda/genética , Interferencia de ARN , Transcriptoma
5.
Am J Emerg Med ; 61: 18-28, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029667

RESUMEN

INTRODUCTION: Carbon monoxide (CO) poisoning can cause serious neurological sequelae. However, there is neither effective treatment strategy nor reliable indicators to determine the prognosis of patients with CO poisoning. The present study aimed to observe the changes of neurological function score, disease severity score, cerebral oxygen utilization (O2UCc), bispectral (BIS) index and neuron-specific enolase (NSE) concentration, and to elucidate the clinical significance of these potential indicators and the neuroprotective effect of mild hypothermia on brain injury in patients with severe acute CO poisoning. MATERIALS AND METHODS: A total of 277 patients with acute severe CO poisoning from 2013 to 2018 were enrolled in our hospital. Patients were divided into three groups according to their body temperature on the day of admission and their willingness to treat: a fever group (n = 78), a normal temperature group (NT group, n = 113), and a mild hypothermia group (MH group, n = 86). All patients were given hyperbaric oxygen therapy, while those in the MH group received additional mild hypothermia treatment. The severity of the disease, the neurobehavioral status, the incidence of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP), and other indicators including BIS, O2UCc, NSE were further evaluated in all patients at given time-points. RESULTS: Mild hypothermia therapy improved the prognosis of patients with CO poisoning, significantly decreased the value of O2UCc and NSE, and up-regulated BIS. The incidence of DEACMP at 6 months was 27% in the fever group, 23% in the NT group, and 8% in the MH group. The values of Glasgow-Pittsburgh coma scale (G-P score), BIS index and NSE were closely related to the occurrence of DEACMP, the cutoff values were 12.41, 52.17 and 35.20 ng/mL, and the sensitivity and specificity were 79.3%, 77.6%, 79.3% and 67.6%, 89.5%, 88.6% in the receiver operating characteristic curve (ROC), respectively. CONCLUSIONS: Early mild hypothermia treatment could significantly reduce the severity of brain injury after CO poisoning, and might be further popularized in clinic. G-P scores, NSE and BIS index can be regarded as the prediction indicators in the occurrence and development of DEACMP. CLINICAL TRIAL REGISTRATION: The study protocol was granted from Qingdao University Research Ethics Committee (Clinical trial registry and ethical approval number: QD81571283).


Asunto(s)
Encefalopatías , Lesiones Encefálicas , Intoxicación por Monóxido de Carbono , Hipotermia , Fármacos Neuroprotectores , Humanos , Intoxicación por Monóxido de Carbono/complicaciones , Intoxicación por Monóxido de Carbono/terapia , Neuroprotección , Monóxido de Carbono , Hipotermia/complicaciones , Fosfopiruvato Hidratasa , Oxígeno , Encefalopatías/etiología , Encefalopatías/terapia
6.
Ecotoxicol Environ Saf ; 236: 113469, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367881

RESUMEN

Long-term manganese exposure causes a neurodegenerative disorder referred to as manganese poisoning, but the mechanism remains unclear and no specific treatment is available. Oxidative stress is widely recognised as one of the main causes of manganese-induced neurotoxicity. In recent years, the role of histone acetylation in neurodegenerative diseases has been widely concerned. curcumin is a natural polyphenol compound extracted from the rhizome of turmeric and exhibits both antioxidant and neuroprotective properties. Therefore, we aimed to investigate whether and how curcumin protects against manganese-induced neurotoxicity from the perspective of histone acetylation, based on the reversibility of histone acetylation modification. In this study, rats were treated with or without curcumin and subjected to long-term manganese exposure. Results that treatment of manganese decreased the protein expression of H3K18 acetylation and H3K27 acetylation at the promoters of oxidative stress-related genes and inhibited the expression of these genes. Nevertheless, curcumin increased the H3K27 acetylation level at the manganese superoxide dismutase (SOD2) gene promoter and promoted the expression of SOD2 gene. Oxidative damage in the rat striatum as well as learning and memory dysfunction were ameliorated after curcumin treatment. Taken together, our results suggest that the regulation of oxidative stress by histone acetylation may be a key mechanism of manganese-induced neurotoxicity. In addition, curcumin ameliorates Mn-induced neurotoxicity may be due to alleviation of oxidative damage mediated by increased activation of H3K27 acetylation at the SOD2 gene promoter.


Asunto(s)
Curcumina , Intoxicación por Manganeso , Acetilación , Animales , Curcumina/farmacología , Expresión Génica , Histonas/metabolismo , Manganeso/metabolismo , Manganeso/toxicidad , Estrés Oxidativo , Ratas
7.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35328461

RESUMEN

Dihydrouridine (D) is an abundant post-transcriptional modification present in transfer RNA from eukaryotes, bacteria, and archaea. D has contributed to treatments for cancerous diseases. Therefore, the precise detection of D modification sites can enable further understanding of its functional roles. Traditional experimental techniques to identify D are laborious and time-consuming. In addition, there are few computational tools for such analysis. In this study, we utilized eleven sequence-derived feature extraction methods and implemented five popular machine algorithms to identify an optimal model. During data preprocessing, data were partitioned for training and testing. Oversampling was also adopted to reduce the effect of the imbalance between positive and negative samples. The best-performing model was obtained through a combination of random forest and nucleotide chemical property modeling. The optimized model presented high sensitivity and specificity values of 0.9688 and 0.9706 in independent tests, respectively. Our proposed model surpassed published tools in independent tests. Furthermore, a series of validations across several aspects was conducted in order to demonstrate the robustness and reliability of our model.


Asunto(s)
Algoritmos , Nucleótidos , Biología Computacional/métodos , ARN de Transferencia , Reproducibilidad de los Resultados
9.
Environ Toxicol ; 37(3): 413-434, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34761859

RESUMEN

The pathogenesis of brain injury caused by carbon monoxide poisoning (COP) is very complex, and there is no exact and reliable treatment in clinic. In the present study, we screened the therapeutic target and related signal pathway of Salvia Miltiorrhiza for acute COP brain injury, and clarified the pharmacological mechanism of multicomponent, multitarget, and multisignal pathway in Salvia Miltiorrhiza by network pharmacology. To further verify the therapeutic effect of Salvia Miltiorrhiza on acute brain injury based on the results of network analysis, a total of 216 male healthy Sprague Dawley rats were collected in the present study and randomly assigned to a normal control group, a COP group and a Tanshinone IIA sulfonate treatment group (72 rats in each group). The rat model of acute severe COP was established by the secondary inhalation in a hyperbaric oxygen chamber. We found that Salvia Miltiorrhiza had multiple active components, and played a role in treating acute brain injury induced by COP through multiple targets and multiple pathways, among them, MAPK/ERK1/2 signaling pathway was one of the most important. COP can start apoptosis process, activate the MAPK/ERK1/2 signaling pathway, and promote the expression of VEGF-A protein and the formation of brain edema. Tanshinone IIA can effectively inhibit apoptosis, up-regulate the expressions of VEGF-A, P-MEK1/2 and P-ERK1/2 proteins, thereby protect endothelial cells, promote angiogenesis and microcirculation, and finally alleviate brain edema.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Monóxido de Carbono , Salvia miltiorrhiza , Animales , Lesiones Encefálicas/tratamiento farmacológico , Intoxicación por Monóxido de Carbono/tratamiento farmacológico , Células Endoteliales , Internet , Masculino , Ratas , Ratas Sprague-Dawley
10.
Pharmacol Res ; 160: 105192, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32942018

RESUMEN

Astragaloside IV (ASIV) is the essential active component of astragalus that has diverse biological activities. Previous research has suggested its potentially beneficial effects on diabetic nephropathies. However, its effects and protective mechanism remain unclear. In this study, we conducted a preclinical systematic review to evaluate the efficacy and potential mechanisms of ASIV in reducing kidney damage in diabetes mellitus (DM) models. Studies were searched from nine databases until January 2020. A random-effects model was used to calculate combined standardised mean difference estimates and 95 % confidence intervals. Risk of bias of studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation risk of bias tool 10-item checklist. RevMan 5.3 software was used for statistical analysis. Twenty-three studies involving 562 animals were included in the meta-analysis. Studies quality scores ranged from 2 to 5. The ASIV group induced a marked decrease in serum creatinine (P < 0.00001), blood urea nitrogen (P < 0.00001), 24-h urine protein (P < 0.00001) and pathological score (P < 0.001) compared with the control group. The determined potential mechanisms of ASIV action were relieving oxidative stress, delaying renal fibrosis, anti-apoptosis and anti-inflammatory action. We conclude that ASIV exerts renal protective effects in animals with DM through multiple signalling pathways.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Animales , Humanos
11.
J Virol ; 86(7): 3809-18, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22278246

RESUMEN

Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.


Asunto(s)
Virus Vaccinia/fisiología , Vaccinia/virología , Proteínas Virales de Fusión/metabolismo , Virión/fisiología , Internalización del Virus , Endocitosis , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Unión Proteica , Vaccinia/fisiopatología , Virus Vaccinia/química , Virus Vaccinia/genética , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Virión/química , Virión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...