Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Bronconeumol (Engl Ed) ; 55(11): 573-580, 2019 Nov.
Artículo en Inglés, Español | MEDLINE | ID: mdl-31257011

RESUMEN

OBJECTIVES: Some pro-inflammatory lipids derived from 1 lipooxygenase enzyme are potent neutrophil chemoattractant, a cell centrally involved in acute respiratory distress syndrome (ARDS); a syndrome lacking effective treatment. Considering the beneficial effects of the leukotriene receptor inhibitor, montelukast, on other lung diseases, whether montelukast attenuates inflammation in a mouse model of ARDS, and whether it reduces LPS stimulated activation of human neutrophils was investigated. METHODS: Thirty-five C57Bl/6 mice were distributed into control (PBS)+24h, LPS+24h (10µg/mouse), control+48h, LPS+48h, and LPS 48h+Montelukast (10mg/kg). In addition, human neutrophils were incubated with LPS (1µg/mL) and treated with montelukast (10µM). RESULTS: Oral-tracheal administration of montelukast significantly attenuated total cells (P<.05), macrophages (P<.05), neutrophils (P<.01), lymphocytes (P<.001) and total protein levels in BAL (P<.05), as well as IL-6 (P<.05), CXCL1/KC (P<.05), IL-17 (P<.05) and TNF-α (P<.05). Furthermore, montelukast reduced neutrophils (P<.001), lymphocytes (P<.01) and macrophages (P<.01) in the lung parenchyma. In addition, montelukast restored BAL VEGF levels (P<.05). LTB4 receptor expression (P<.001) as well as NF-κB (P<.001), a downstream target of LPS, were also reduced in lung parenchymal leukocytes. Furthermore, montelukast reduced IL-8 (P<.001) production by LPS-treated human neutrophils. CONCLUSION: In conclusion, montelukast efficiently attenuated both LPS-induced lung inflammation in a mouse model of ARDS and in LPS challenged human neutrophils.


Asunto(s)
Acetatos/farmacología , Antagonistas de Leucotrieno/farmacología , Activación Neutrófila/efectos de los fármacos , Neumonía/prevención & control , Quinolinas/farmacología , Animales , Lavado Broncoalveolar , Permeabilidad Capilar/efectos de los fármacos , Ciclopropanos , Citocinas/análisis , Citocinas/efectos de los fármacos , Humanos , Recuento de Leucocitos , Lipopolisacáridos , Pulmón/citología , Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neumonía/inducido químicamente , Receptores de Leucotrieno B4/efectos de los fármacos , Receptores de Leucotrieno B4/metabolismo , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/etiología , Sulfuros , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Eur J Immunol ; 49(6): 928-939, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30888047

RESUMEN

Creatine (Cr) is a substrate for adenosine triphosphate synthesis, and it is the most used dietary supplement among professional and recreative athletes and sportsmen. Creatine supplementation may increase allergic airway response, but the cellular and molecular mechanisms are unknown. We used murine model of OVA-induced chronic asthma and showed that Cr supplementation increased total proteins, ATP level, lymphocytes, macrophages, and IL-5 levels in BALF, as well as IL-5 in the supernatant of re-stimulated mediastinal lymph nodes. IL-5 and IL-13 expression by epithelial cells and by peribronchial leukocytes were increased by Cr. Cr augmented the expression of P2 × 7 receptor by peribronchial leukocytes and by epithelial cells, and increased the accumulation of eosinophils in peribronchial space and of collagen fibers in airway wall. In human cells, while Cr induced a release of ATP, IL-6, and IL-8 from BEAS-2B cells, whole blood cells, such as eosinophils, and CD4+ T cells, P2 × 7 receptor inhibitor (A740003) reduced such effects, as denoted by reduced levels of ATP, IL-6, and IL-8. Therefore, Cr supplementation worsened asthma pathology due to activation of airway epithelial cells and peribronchial leukocytes, involving purinergic signaling.


Asunto(s)
Asma/patología , Creatina/toxicidad , Suplementos Dietéticos/toxicidad , Neumonía/patología , Receptores Purinérgicos P2X7/metabolismo , Animales , Asma/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Neumonía/metabolismo
3.
Cytokine ; 119: 71-80, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30903866

RESUMEN

BACKGROUND: Adiponectin exhibits anti-inflammatory actions and is mainly expressed in adipose tissue. However, recent studies have shown that adiponectin can also be secreted by skeletal muscle fibers with autocrine and paracrine effects. OBJECTIVES: To analyze the role of adiponectin in the metabolic and inflammatory response of skeletal muscle after acute exhaustive aerobic exercise. METHODS: C57BL/6 (WT) and adiponectin knockout (AdKO) mice underwent four days of treadmill running adaptation and at the fifth day, they performed an incremental maximum test to determine the maximum speed (Vmax). Acute exercise consisted of one hour at 60% Vmax. Mice were euthanatized 2 and 24 h after acute exercise session. RESULTS: Serum and gastrocnemius adiponectin increased after 2-hours of acute exercise. NEFA concentrations were lower in non-exercise AdKO, and decreased 2-hours after exercise only in WT. No differences were found in muscle triacylglycerol content; however, glycogen content was higher in AdKO in non-exercise (p-value = 0.005). WT showed an increase in AMP-activated protein kinase (AMPK) phosphorylation 2-hours after exercise and its level went back to normal after 24-hours. Otherwise, exercise was not able to modify AMPK in the same way as in AdKO. WT showed an increase in the phosphorylation of ACC (Ser79) 2-hours after exercise and return to normal after 24-hours of exercise (p-value < 0.05), kinects that was not observed in AdKO mice. IL-10 and IL-6 concentration was completely different among genotypes. In WT, these cytokines were increased at 2 (p-value < 0.01) and 24 h (p-value < 0.001) after exercise when compared with AdKO. NF-κBp65 protein and gene expression were not different between genotypes. CONCLUSION: Adiponectin influences muscle metabolism, mainly by the decrease in exercise-induced AMPK phosphorylation, inflammatory profile and IL-6 in the muscle.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/metabolismo , Interleucina-6/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Citocinas/metabolismo , Expresión Génica/fisiología , Interleucina-10/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/fisiología
4.
Cytokine ; 104: 46-52, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29454302

RESUMEN

PURPOSE: Obesity results in decreased lung function and increased inflammation. Moderate aerobic exercise (AE) reduced lung inflammation and remodeling in a variety of respiratory disease models. Therefore, this study investigated whether AE can attenuate a diet-induced obesity respiratory phenotype; including airway hyper-responsiveness (AHR), remodeling and inflammation. METHODS: Sixty C57Bl/6 male mice were distributed into four groups: control lean (CL), exercise lean (EL), obese (O) and obese exercise (OE) groups (2 sets of 7 and 8 mice per group; n = 15). A classical model of diet-induced obesity (DIO) over 12 weeks was used. AE was performed 60 min/day, 5 days/week for 5 weeks. Airway hyperresponsiveness (AHR), lung inflammation and remodeling, adipokines and cytokines in bronchoalveolar lavage (BAL) was determined. RESULTS: A high fat diet over 18 weeks significantly increased body weight (p < .0001). Five weeks of AE significantly reduced both AHR and pulmonary inflammation. AHR in obese mice that exercised was reduced at the basal level (p < .05), vehicle (PBS) (p < .05), 6.25 MCh mg/mL (p < .05), 12.5 MCh mg/mL (p < .01), 25 MCh mg/mL (p < .01) and 50 MCh mg/mL (p < .05). Collagen (p < .001) and elastic (p < .001) fiber deposition in airway wall and also smooth muscle thickness (p < .001) were reduced. The number of neutrophils (p < .001), macrophages (p < .001) and lymphocytes (p < .01) were reduced in the peribronchial space as well as in the BAL: lymphocytes (p < .01), macrophages (p < .01), neutrophils (p < .001). AE reduced obesity markers leptin (p < .001), IGF-1 (p < .01) and VEGF (p < .001), while increased adiponectin (p < .01) in BAL. AE also reduced pro-inflammatory cytokines in the BAL: IL-1ß (p < .001), IL-12p40 (p < .001), IL-13 (p < .01), IL-17 (p < .001, IL-23 (p < .05) and TNF-alpha (p < .05), and increased anti-inflammatory cytokine IL-10 (p < .05). CONCLUSIONS: Aerobic exercise reduces high fat diet-induced obese lung phenotype (AHR, pulmonary remodeling and inflammation), involving anti-inflammatory cytokine IL-10 and adiponectin.


Asunto(s)
Obesidad/complicaciones , Condicionamiento Físico Animal , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/prevención & control , Animales , Biomarcadores/metabolismo , Colágeno/metabolismo , Dieta Alta en Grasa , Elastina/metabolismo , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA