RESUMEN
This study presented the influence of two types of clay: kaolin (Kao) and red clay (RC) on the chemical and physical properties of ceramic specimens when galvanic sludge (GS) is incorporated to encapsulate heavy metals. Samples were obtained of GS from the industrial district of Manaus - Amazonas State, Brazil, and kaolin (Kao), and red clay (RC) from the Central Amazon. A fourth sample was prepared by mixing GS, Kao, and RC in the ratio 1:1:8 (GS + Kao + RC). This mixture was ground, and ceramic specimens were prepared, and heat treated at 950 °C and 1200 °C for three hours for phase detection, compressive strength, leaching of Fe, Ni and Cr metals and life cycle assessment. Galvanic sludge, Kao, and RC were also, and heat treated to at 950 °C and 1200 °C for three hours, obtaining GS950, GS1200, Kao950, Kao1200, RC950, and RC1200. The samples were submitted to XRF, XRD, Rietveld refinement, Mössbauer spectroscopy, TG/DTG/DSC, and SEM. The results show that the formation of nickel oxide and a spinel solid solution of the type Fe3+{Fe1-y3+,Fe1-x2+,Nix2+,Cry3+}O4 (in which [] = tetrahedral site, {} octahedral site) occurs in GS1200, which is caused by sulfate decomposition to SO2. At 1200 °C, heavy metals are encapsulated, forming other phases such as nickel silicate and hematite. Life cycle assessment was used to verify the sustainability and value of GS in clay for making bricks, and it indicated that the production of ceramics is feasible, reduces the use of clays, and is sustainable.
Asunto(s)
Cerámica , Arcilla , Caolín , Metales Pesados , Aguas del Alcantarillado , Caolín/química , Arcilla/química , Metales Pesados/química , Metales Pesados/análisis , Cerámica/química , Aguas del Alcantarillado/química , BrasilRESUMEN
Four covalently-bonded tin(ii) coordination polymers, (1)-(4), were hydrothermally prepared in aqueous alkaline media by the reactions of SnSO4 with 1,2,4,5-benzenetetracarboxylic acid (1), 1,3,5-benzenetricarboxylic acid (2), 4-hydroxypyridine-2,6-dicarboxylic acid (3), and 1,3,5-cyclohexanetricarboxylic acid (4). All products were structurally authenticated by single-crystal X-ray diffraction, and the number of different tin centres and their oxidation states were confirmed by 119Sn Mössbauer spectroscopy. In addition, the comparison between experimental and simulated X-ray powder diffraction patterns confirmed the authenticity of the samples. Our crystallographic results for (1)-(4) show that the Sn(ii) centres are tetracoordinated and exhibit distorted disphenoidal geometries, corroborating the presence of one stereochemically active lone electron pair at each metal site. Products (1) and (2) display bi-dimensional polymeric structures, (3) exhibits a one-dimensional architecture, whereas (4) shows a remarkable three-dimensional coordination network. Hirshfeld surface and supramolecular analyses for the repeating units of (1)-(4) were also performed in order to identify structurally important non-covalent interactions.
RESUMEN
The evolution of the structural and magnetic properties of nanocomposites formed by cobalt ferrite particles dispersed in xerogel and aerogel silica matrices (CoFe2O4/SiO2) have been studied as a function of the temperature of preparation and the amount of ferrite dispersed in the matrix. Wet samples with different amounts of CoFe2O4 in SiO2 matrix were prepared by sol-gel process in monolithic form. Xerogel and aerogel samples were prepared by controlled and hypercritical drying, respectively, and heated at various temperatures between 300 and 1100 degrees C. Superparamagnetic behavior has been observed by magnetization studies at room temperature for xerogels prepared at low temperature. Aerogel samples showed significant superparamagnetic fractions for all thermal treatment temperatures as determined by Mössbauer spectroscopy. Magnetization of the nanocomposites at 10 KOe applied field varied from 1 to 19 emu/g and the coercivity from 90 to 2320 Oe, respectively, for the different morphologies and textures of the analyzed material. The results show that besides the magnetization and coercivity depend on crystallite size, parameters such as ferrite content, porosity and drying conditions greatly influence the nanocomposite magnetic behavior.
RESUMEN
Ordered mesoporous materials like SBA-15 have a network of channels and pores with well-defined size in the nanoscale range. This particular silica matrix pore architecture makes them suitable for hosting a broad variety of compounds in very promising materials in a range of applications, including drug release magnetic carriers. In this work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation-precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N(2) adsorption, and scanning electron microscopy (SEM). The influence of magnetic nanoparticles on drug release kinetics was studied with cisplatin, carboplatin, and atenolol under in vitro conditions in the absence and in the presence of an external magnetic field (0.25 T) by using NdFeB permanent magnet. The constant external magnetic field did not affect drug release significantly. The low-frequency alternating magnetic field had a large influence on the cisplatin release profile.
Asunto(s)
Preparaciones de Acción Retardada/química , Óxido Ferrosoférrico/química , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Dióxido de Silicio/química , Absorción , Preparaciones de Acción Retardada/efectos de la radiación , Difusión , Campos Electromagnéticos , Óxido Ferrosoférrico/efectos de la radiación , Ensayo de Materiales , Preparaciones Farmacéuticas/efectos de la radiación , Porosidad , Dosis de Radiación , Dióxido de Silicio/efectos de la radiaciónRESUMEN
Magnetite nanoparticles coated by mesoporous silica were synthesized by an alternative chemical route using a neutral surfactant and without the application of any functionalization method. The magnetite (Fe(3)O(4)) nanoparticles were prepared by precipitation from aqueous media, and then coated with mesoporous silica by using nonionic block copolymer surfactants as the structure-directing agents. The mesoporous SiO(2)-coated Fe(3)O(4) samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, N(2) adsorption-desorption isotherms, transmission electron microscopy, (57)Fe Mössbauer spectroscopy, and vibrating sample magnetometry. Our results revealed that the magnetite nanoparticles are completely coated by well-ordered mesoporous silica with free pores and stable (â¼8 nm thick) pore walls, and that the structural and magnetic properties of the Fe(3)O(4) nanoparticles are preserved in the applied synthesis route.
RESUMEN
In this work we describe the fabrication of FeCo alloy (less than 10 at% Co) thin films from aqueous ammonium sulfate solutions onto n-type Si(111) substrates using potentiostatic electrodeposition at room temperature. The incorporation of Co into the deposits tends to inhibit Fe silicide formation and to protect deposits against oxidation under air exposure. As the incorporation of Co was progressively increased, the sizes of nuclei consisting of FeCo alloy increased, leading to films with a highly oriented body-centered cubic structure with crystalline texture, where (110) planes remain preferentially oriented parallel to the film surface.
Asunto(s)
Aleaciones/química , Cobalto/química , Hidrógeno/química , Hierro/química , Membranas Artificiales , Silicio/química , Electroquímica , Magnetismo , Tamaño de la Partícula , Sensibilidad y Especificidad , Espectrofotometría/métodos , Espectroscopía de Mossbauer/métodos , Propiedades de Superficie , Difracción de Rayos X , Rayos XRESUMEN
The reaction of ammonium pyrrolidinedithiocarbamate, [NH4{S2CN(CH2)4}], with SnCl2, [Sn(C6H5)2Cl2], [Sn(C6H5)3Cl], [Sn(C4H9)2Cl2] and [Sn(C6H11)3Cl] produced in good yield the compounds [Sn{S2CN(CH2)4}2Cl2] (1), [Sn{S2CN(CH2)4}2Ph2] (2), [Sn{S2CN(CH2)4}Ph3] (3), [Sn{S2CN(CH2)4}2 n-Bu2] (4) and [Sn{S2CN(CH2)4}Cy3] (5). The complexes were characterised by infrared, multinuclear NMR (1H, 13C{1H} and 119Sn{1H}) and 119Sn Mössbauer spectroscopies. In addition, the crystal structure of 4 was determined by X-ray crystallography. The in vitro antifungal activity of the tin(IV) complexes as well of the ligand was performed on human pathogenic fungi, Candida albicans, in concentrations of 0.025; 0.050; 0.100; 0.200; 0.400; 0.800; 1.600 and 3.200 mM. The microorganism presented resistance to the dithiocarbamate ligand and all tin(IV) complexes tested were actives. The highest activity was found for compounds 1 and 4.