Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256973

RESUMEN

BACKGROUNDSarilumab (anti-interleukin-6 receptor- monoclonal antibody) may attenuate the inflammatory response in Covid-19. METHODSWe performed an adaptive, phase 2/3, randomized, double-blind, placebo-controlled trial of intravenous sarilumab 200 mg or 400 mg in adults hospitalized with Covid-19. The phase 3 primary analysis population (cohort 1) was patients with critical Covid-19 receiving mechanical ventilation (MV) randomized to sarilumab 400 mg or placebo. The primary end point for phase 3 was the proportion of patients with [≥]1-point improvement in clinical status from baseline to day 22. RESULTSFour-hundred fifty-seven (457) and 1365 patients were randomized and treated in phases 2 and 3, respectively. Among phase 3 critical patients receiving MV (n=289; 34.3% on corticosteroids), the proportion with [≥]1-point improvement in clinical status (alive not receiving MV) at day 22 was 43.2% in sarilumab 400 mg and 35.5% in placebo (risk difference [RD] +7.5%; 95% confidence interval [CI], -7.4 to 21.3; P=0.3261), representing a relative risk improvement of 21.7%. Day 29 all-cause mortality was 36.4% in sarilumab 400 mg versus 41.9% in placebo (RD -5.5%; 95% CI, -20.2 to 8.7; relative risk reduction 13.3%). In post hoc analyses pooling phase 2 and 3 critical patients receiving MV, the hazard ratio (HR) for death in sarilumab 400 mg compared with placebo was 0.76 (95% CI, 0.51 to 1.13) overall, improving to 0.49 (95% CI, 0.25 to 0.94) in patients receiving corticosteroids at baseline. CONCLUSIONIn hospitalized patients with Covid-19 receiving MV, numerical benefits with sarilumab did not achieve statistical significance, but benefit may be greater in patients receiving corticosteroids. A larger study is required to confirm this observed numerical benefit. (ClinicalTrials.gov number, NCT04315298)

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248176

RESUMEN

SARS-CoV-2 enters host cells by binding angiotensin-converting enzyme 2 (ACE2). Through a genome-wide association study, we show that a rare variant (MAF = 0.3%, odds ratio 0.60, P=4.5x10-13) that down-regulates ACE2 expression reduces risk of COVID-19 disease, providing human genetics support for the hypothesis that ACE2 levels influence COVID-19 risk. Further, we show that common genetic variants define a risk score that predicts severe disease among COVID-19 cases.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20220087

RESUMEN

Projections of the stage of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic and local, regional and national public health policies designed to limit the spread of the epidemic as well as "reopen" cities and states, are best informed by serum neutralizing antibody titers measured by reproducible, high throughput, and statically credible antibody (Ab) assays. To date, a myriad of Ab tests, both available and authorized for emergency use by the FDA, has led to confusion rather than insight per se. The present study reports the results of a rapid, point-in-time 1,000-person cohort study using serial blood donors in the New York City metropolitan area (NYC) using multiple serological tests, including enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). These were then tested and associated with assays for neutralizing Ab (NAb). Of the 1,000 NYC blood donor samples in late June and early July 2020, 12.1% and 10.9% were seropositive using the Ortho Total Ig and the Abbott IgG HTSA assays, respectively. These serological assays correlated with neutralization activity specific to SARS-CoV-2. The data reported herein suggest that seroconversion in this population occurred in approximately 1 in 8 blood donors from the beginning of the pandemic in NYC (considered March 1, 2020). These findings deviate with an earlier seroprevalence study in NYC showing 13.7% positivity. Collectively however, these data demonstrate that a low number of individuals have serologic evidence of infection during this "first wave" and suggest that the notion of "herd immunity" at rates of [~]60% or higher are not near. Furthermore, the data presented herein show that the nature of the Ab-based immunity is not invariably associated with the development of NAb. While the blood donor population may not mimic precisely the NYC population as a whole, rapid assessment of seroprevalence in this cohort and serial reassessment could aid public health decision making.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20221804

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease-19 (COVID-19), a respiratory illness that can result in hospitalization or death. We investigated associations between rare genetic variants and seven COVID-19 outcomes in 543,213 individuals, including 8,248 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome-wide or when specifically focusing on (i) 14 interferon pathway genes in which rare deleterious variants have been reported in severe COVID-19 patients; (ii) 167 genes located in COVID-19 GWAS risk loci; or (iii) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, with results publicly browsable at https://rgc-covid19.regeneron.com.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...