Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Total Environ ; 806(Pt 4): 151267, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715227

RESUMEN

The bioaccumulation of cyclic volatile methylsiloxanes (D3 to D6) as well as linear siloxanes (L3 to L5) was studied in a food web in the St. Lawrence River downstream of the effluent of the municipal wastewater treatment plant in Montreal, Canada. For most species, differences in δ15N in fish and prey showed a clear separation of individual fish feeding in food webs influenced by the wastewater plume from those feeding outside the plume. Cyclic siloxanes were detected in all biotic samples from the individuals identified as feeding in the effluent plume. Siloxane D5 accounted for more than 80% of the total siloxanes. Linear siloxane L5 was also abundant in walleye and gull eggs. Total siloxane concentrations in suspended sediments were 17.3 times higher than in surface sediments in the region of the river in the effluent plume. Caged freshwater mussels (Elliptio sp.), placed in the effluent plume, bioaccumulated 43 times more total siloxanes than PBDEs in 30 days, demonstrating how readily siloxanes are taken up in biota and what a significant component of the contaminant body burden they can account for. The sediment-biota accumulation factors (BSAF) for total siloxanes (∑ D3 to D6 and L3 to L5) showed values of 65.4, 27.8, 9.9 and 6.4 for walleye, northern pike, yellow perch and round goby respectively.


Asunto(s)
Percas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Monitoreo del Ambiente , Humanos , Siloxanos/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 255: 126877, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32402871

RESUMEN

Introduction of invasive species can have a profound impact on food web structure and therefore on trophic transfer of contaminants. In the St. Lawrence River (Canada), 20 years after its first detection in the system, invasive round goby (Neogobius melanostomus) has become the main prey for several piscivorous species. To evaluate the accumulation, trophic transfer, and the ecological risk of polybrominated diphenyl ethers (PBDEs) in this recently modified freshwater food web, samples of sediment, invertebrates, fish and aquatic bird eggs and plasma were collected. Sampling sites were located upstream and at two locations downstream of the Montreal wastewater treatment plant outfall. The results suggest that the influence of the WWTP effluent on PBDEs concentrations varied among the various compartments of this recently modified freshwater food web. The results also suggest that although predatory fish have switched to consuming round goby as a prey item instead of native yellow perch, this new feeding behaviour is not expected to have important impacts on the level of transfer of PBDE within this food web. The biota-sediment accumulation factors (BSAFs) ranged from 0.6 to 436, whereas biomagnification factors (BMFs) varied between 0.2 and 475. Despite our conservative method of risk assessment, we calculated an important risk for piscivorous fish and gull eggs within this study area.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Éteres Difenilos Halogenados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos , Canadá , Charadriiformes , Peces , Agua Dulce , Especies Introducidas , Invertebrados , Percas , Ríos , Aguas Residuales/química
4.
Environ Int ; 59: 183-200, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23831544

RESUMEN

In Canada, perfluoroalkyl acids (PFAAs) have been the focus of several monitoring programs and research and surveillance studies. Here, we integrate recent data and perform a multi-media assessment to examine the current status and ongoing trends of PFAAs in Canada. Concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and other long-chain perfluorocarboxylates (PFCAs) in air, water, sediment, fish, and birds across Canada are generally related to urbanization, with elevated concentrations observed around cities, especially in southern Ontario. PFOS levels in water, fish tissue, and bird eggs were below their respective Draft Federal Environmental Quality Guidelines, suggesting there is low potential for adverse effects to the environment/organisms examined. However, PFOS in fish and bird eggs tended to exceed guidelines for the protection of mammalian and avian consumers, suggesting a potential risk to their wildlife predators, although wildlife population health assessments are needed to determine whether negative impacts are actually occurring. Long-term temporal trends of PFOS in suspended sediment, sediment cores, Lake Trout (Salvelinus namaycush), and Herring Gull (Larus argentatus) eggs collected from Lake Ontario increased consistently from the start of data collection until the 1990s. However, after this time, the trends varied by media, with concentrations stabilizing in Lake Trout and Herring Gull eggs, and decreasing and increasing in suspended sediment and the sediment cores, respectively. For PFCAs, concentrations in suspended sediment, sediment cores, and Herring Gulls generally increased from the start of data collection until present and concentrations in Lake Trout increased until the late 1990s and subsequently stabilized. A multimedia comparison of PFAA profiles provided evidence that unexpected patterns in biota of some of the lakes were due to unique source patterns rather than internal lake processes. High concentrations of PFAAs in the leachate and air of landfill sites, in the wastewater influent/effluent, biosolids, and air at wastewater treatment plants, and in indoor air and dust highlight the waste sector and current-use products (used primarily indoors) as ongoing sources of PFAAs to the Canadian environment. The results of this study demonstrate the utility of integrating data from different media. Simultaneous evaluation of spatial and temporal trends in multiple media allows inferences that would be impossible with data on only one medium. As such, more co-ordination among monitoring sites for different media is suggested for future sampling, especially at the northern sites. We emphasize the importance of continued monitoring of multiple-media for determining future responses of environmental PFAA concentrations to voluntary and regulatory actions.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Aves , Huevos/análisis , Peces , Lagos/química , Ontario , Instalaciones de Eliminación de Residuos
5.
Environ Toxicol Chem ; 30(7): 1564-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21523816

RESUMEN

A nationwide study was conducted to examine concentrations of polybrominated diphenyl ethers (PBDEs) in top predatory fish, with a focus on lake trout (Salvelinus namaycush), across Canada, and to explore possible influences of food web processes. Concentrations of the three most abundant PBDE homolog groups (tetra-, penta-, and hexa-PBDEs) were, for the most part, higher in Great Lakes and Lake Champlain fish compared with fish from other systems. The Canadian Federal Environmental Quality Guideline for the penta-homolog was exceeded in 70% of the fish examined. However, virtually no guideline exceedances were found for other congeners. In general, PBDE-47 (a representative lower brominated congener) was significantly and positively correlated with fish length, weight, age, lipid content, and stable isotopes of nitrogen and carbon. Significant differences in the slopes of the PBDE-47/covariate relationships between sites prevented concentrations from being adjusted using an analysis of covariance (ANCOVA). However, plots showed that elevated concentrations of PBDE-47 in Great Lakes and Lake Champlain fish remained after accounting for the influence of covariates. In contrast, for PBDE-183 (a representative higher brominated congener), the relationships between fish concentrations and covariates were not consistent, which could be a result of biotransformation being more important in controlling its bioaccumulation. The data from the current study show an overall disconnect between fish PBDE concentrations and likely loadings, which may be caused by differences in food web processes between systems. Continued long-term fish contaminant monitoring is needed to evaluate potential risk to fish and their consumers. However, we also recommend sediment sampling and focused food web studies to provide information on PBDE inputs to the systems and mechanisms of biomagnification, respectively.


Asunto(s)
Éteres Difenilos Halogenados/metabolismo , Trucha/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminación Química del Agua/estadística & datos numéricos , Análisis de Varianza , Animales , Biotransformación , Canadá , Monitoreo del Ambiente , Cadena Alimentaria , Agua Dulce/química , Éteres Difenilos Halogenados/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA