Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(24): 5681-5691, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37314883

RESUMEN

We present a comprehensive study of the exciton wave packet evolution in disordered lossless polaritonic wires. Our simulations reveal signatures of ballistic, diffusive, and subdiffusive exciton dynamics under strong light-matter coupling and identify the typical time scales associated with the transitions between these qualitatively distinct transport phenomena. We determine optimal truncations of the matter and radiation subsystems required for generating reliable time-dependent data from computational simulations at an affordable cost. The time evolution of the photonic part of the wave function reveals that many cavity modes contribute to the dynamics in a nontrivial fashion. Hence, a sizable number of photon modes is needed to describe exciton propagation with a reasonable accuracy. We find and discuss an intriguingly common lack of dominance of the photon mode on resonance with matter in both the presence and absence of disorder. We discuss the implications of our investigations for the development of theoretical models and analysis of experiments where coherent intermolecular energy transport and static disorder play an important role.

2.
J Chem Phys ; 158(3): 034302, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681629

RESUMEN

Criegee intermediates, formed from the ozonolysis of alkenes, are known to have a role in atmospheric chemistry, including the modulation of the oxidizing capacity of the troposphere. Although studies have been conducted since their discovery, the synthesis of these species in the laboratory has ushered in a new wave of investigations of these structures, both theoretically and experimentally. In some of these theoretical studies, high-order corrections for correlation energy are included to account for the mid multi-reference character found in these systems. Many of these studies include a focus on kinetics; therefore, the calculated energies should be accurate (<1 kcal/mol in error). In this research, we compute the enthalpies of formation for a small set of Criegee intermediates, including higher-order coupled cluster corrections for correlation energy up to coupled cluster with perturbative quintuple excitations. The enthalpies of formation for formaldehyde oxide, anti-acetaldehyde oxide, syn-acetaldehyde oxide, and acetone oxide are presented at 0 K as 26.5, 15.6, 12.2, and 0.1 kcal mol-1, respectively. Additionally, we do not recommend the coupled cluster with perturbative quadruple excitations [CCSDT(Q)] energy correction, as it is approximately twice as large as that of the coupled cluster with full quadruple excitations (CCSDTQ). Half of the CCSDT(Q) energy correction may be included as a reliable, cost-effective estimation of CCSDTQ energies for Criegee intermediates.


Asunto(s)
Acetaldehído , Acetona , Fenómenos Físicos , Alquenos , Óxidos
3.
J Chem Theory Comput ; 18(2): 677-686, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-34978451

RESUMEN

Approximating molecular wave functions involves heavy numerical effort; therefore, codes for such tasks are written completely or partially in efficient languages such as C, C++, and Fortran. While these tools are dominant throughout quantum chemistry packages, the efficient development of new methods is often hindered by the complexity associated with code development. In order to ameliorate this scenario, some software packages take a dual approach where a simpler, higher-level language, such as Python, substitutes the traditional ones wherever performance is not critical. Julia is a novel, dynamically typed, programming language that aims to solve this two-language problem. It gained attention because of its modern and intuitive design, while still being highly optimized to compete with "low-level" languages. Recently, some chemistry-related projects have emerged exploring the capabilities of Julia. Herein, we introduce the quantum chemistry package Fermi.jl, which contains the first implementations of post-Hartree-Fock methods written in Julia. Its design makes use of many Julia core features, including multiple dispatch, metaprogramming, and interactive usage. Fermi.jl is a modular package, where new methods and implementations can be easily added to the existing code. Furthermore, it is designed to maximize code reusability by relying on general functions with specialized methods for particular cases. The feasibility of the project is explored through evaluating the performance of popular ab initio methods. It is our hope that this project motivates the usage of Julia within the community and brings new contributions into Fermi.jl.

4.
J Chem Theory Comput ; 17(1): 182-190, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33274920

RESUMEN

An externally corrected coupled cluster (CC) method, where an adaptive configuration interaction (ACI) wave function provides the external cluster amplitudes, named ACI-CC, is presented. By exploiting the connection between configuration interaction and CC through cluster analysis, the higher-order T3 and T4 terms obtained from ACI are used to augment the T1 and T2 amplitude equations from traditional CC. These higher-order contributions are kept frozen during the CC iterations and do not contribute to an increased cost with respect to coupled cluster including the single and double excitations (CCSD). We have benchmarked this method on three closed-shell systems: beryllium dimer, carbonyl oxide, and cyclobutadiene, with good results compared to other corrected CC methods. In all cases, the inclusion of these external corrections improved upon the "gold standard" CCSD(T) results, indicating that ACI-CCSD(T) can be used to assess strong correlation effects in a system and as an inexpensive starting point for more complex external corrections.

5.
Phys Chem Chem Phys ; 22(39): 22555-22566, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33000815

RESUMEN

Criegee intermediates are important targets for study in atmospheric chemistry because of their capacity to oxidize airborne species. Among these species, ammonia has received critical attention for its presence in polluted agricultural or industrial areas and its role in forming particulate matter and condensation nuclei. Although methylamine has been given less attention than ammonia, both theoretical and experimental studies have demonstrated that the additional methyl substitution on the ammonia derivatives increases the rate constants for some systems. This suggests that the methylamine addition to Criegee intermediates could be more significant to atmospheric processes. In this work, geometries are optimized at the DF-CCSD(T)/ANO1 level for the methylamine addition reactions to the simplest Criegee intermediate and the anti- and syn-methylated Criegee intermediates. Energies for each stationary point were computed at the CCSD(T)/CBS level with corrections from the CCSDT(Q) method. Rate constants are obtained for each reaction using canonical transition state theory. Although methylamine addition proved to be a more favorable reaction relative to ammonia addition, the significantly lower concentration of atmospheric methylamine limits the prevalence of these reactions, even in the most optimal conditions. It is unlikely that the methylamine addition to Criegee intermediates will contribute significantly to the consumption of Criegee intermediates in the atmosphere.

6.
Phys Chem Chem Phys ; 21(32): 17760-17771, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31368461

RESUMEN

Bimolecular reactions involving stabilized Criegee intermediates (SCI) have been the target of many studies due to the role these molecules play in atmospheric chemistry. Recently, kinetic rates for the addition reaction of the simplest SCI (formaldehyde oxide) and its methylated analogue (acetone oxide) with methanol were reported both experimentally and theoretically. We re-examine the energy profile of these reactions by employing rigorous ab initio methods. Optimized CCSD(T)/ANO1 geometries are reported for the stationary points along the reaction path. Energies are obtained at the CCSD(T)/CBS level of theory. Contributions of full triple and quadruple excitations are computed to assess the convergence of this method. Rate constants are obtained using conventional canonical transition state theory under the rigid rotor harmonic oscillator approximation and with the inclusion of a one-dimensional hindered rotor treatment. These corrections for internal rotations have a significant impact on computed kinetic rate constants. With this approach, we compute rate constants for the addition of methanol to formaldehyde oxide (H2COO) and acetone oxide [(CH3)2COO] at 298.15 K as (1.2 ± 0.8) × 10-13 and (2.8 ± 1.3) × 10-15 cm3 s-1, respectively. Additionally, we investigate the temperature dependence of the rate constant, concluding that the transition state barrier height and tunneling contributions shape the qualitative behaviour of these reactions.

7.
J Chem Phys ; 148(1): 014305, 2018 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-29306279

RESUMEN

The methylene amidogen radical (H2CN) plays a role in high-energy material combustion and extraterresterial atmospheres. Recent theoretical work has struggled to match experimental assignments for its CN and antisymmetric CH2 stretching frequencies (ν2 and ν5), which were reported to occur at 1725 and 3103 cm-1. Herein, we compute the vibrational energy levels of this molecule by extrapolating quadruples-level coupled-cluster theory to the complete basis limit and adding corrections for vibrational anharmonicity. This level of theory predicts that ν2 and ν5 should occur at 1646 and 2892 cm-1, at odds with the experimental assignments. To investigate the possibility of defects in our theoretical treatment, we analyze the sensitivity of our approach to each of its contributing approximations. Our analysis suggests that the observed deviation from experiment is too large to be explained as an accumulation of errors, leading us to conclude that these transitions were misassigned. To help resolve this discrepancy, we investigate possible byproducts of the H + HCN reaction, which was the source of H2CN in the original experiment. In particular, we predict vibrational spectra for cis-HCNH, trans-HCNH, and H2CNH using high-level coupled-cluster computations. Based on these results, we reassign the transition at 1725 cm-1 to ν3 of trans-HCNH, yielding excellent agreement. Supporting this identification, we assign a known contaminant peak at 886 cm-1 to ν5 of the same conformer. Our computations suggest that the peak observed at 3103 cm-1, however, does not belong to any of the aforementioned species. To facilitate further investigation, we use structure and bonding arguments to narrow the range of possible candidates. These arguments lead us to tentatively put forth formaldazine [(H2CN)2] as a suggestion for further study, which we support with additional computations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA