Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 15(5): 3530-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26504973

RESUMEN

The facile one-pot synthesis of CeO2-based catalysts has been developed to prepare a relatively large amount of nanopowders with relevant catalytic activity towards CO oxidation. The method consists of a two-steps process carried out in ethylene glycol: in the first step, 5 nm well-crystallized pure CeO2 is prepared. In a subsequent second step, a salt of a noble metal is added to the CeO2 suspension and the deposition of the noble metal on the nanocrystalline CeO2 is induced by heating. Two catalysts were prepared: Pt/CeO2 and Au/CeO2. The as-prepared catalysts, the thermally treated catalysts, as well as the pure CeO2, are characterized by XRD, TGA, XPS, FTIR, HR-TEM, STEM, particle size distribution, and N2-physisorption. In spite of the identical preparation protocol, Au and Pt behave in a completely different way: Au forms rather large particles, most of them with triangular shape, easily identifiable and dispersed in the CeO2 matrix. In contrast, Pt was not identified as isolated particles. The high resolution X-ray diffraction carried out on the Pt/CeO2 thermally treated sample (500 degrees C for 1 h) shows a significant CeO2 lattice shrinkage, which can be interpreted as an at least partial incorporation of Pt into the CeO2 crystal lattice. Moreover, only Pt2+ and Pt4+ species were identified by XPS. In literature, the incorporation of Pt into the CeO2 lattice is supported by first-principle calculations and experimentally demonstrated only by combustion synthesis methods. To the best of our knowledge this is the first report where ionically dispersed Pt into the CeO2 lattice is obtained via a liquid synthesis method. The thermally treated Pt/CeO2 sample revealed good activity with 50% CO conversion at almost room temperature.

2.
Chemosphere ; 119: 1314-1321, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24630447

RESUMEN

In order to assess the possible risks of applications containing engineered nanomaterials, it is essential to generate more data about their release and exposure, so far largely overlooked areas of research. The aim of this work was to study the characterization of the materials released from paint containing nano-SiO2 during weathering and exposure to water. Panels coated with nano-SiO2 containing paint and a nano-free reference paint were exposed to accelerated weathering cycles in a climate chamber. The total release of 89 six-hour cycles of UV-illumination and precipitation was 2.3% of the total SiO2 contained in the paint. Additional tests with powdered and aged paint showed that the majority of the released Si was present in dissolved form and that only a small percentage was present in particulate and nano-particulate form. TEM imaging of the leachates indicated that the majority of the particulate Si was contained in composites together with Ca, representing the paint matrix, and only few single dispersed SiO2-NPs were detected. The results suggest that toxicological and ecotoxicological studies need to consider that the released particles may have been transformed or are embedded in a matrix.


Asunto(s)
Nanoestructuras/análisis , Pintura , Dióxido de Silicio/análisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Agua/química , Nanoestructuras/química , Pintura/efectos de la radiación , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química
3.
Environ Sci Technol ; 48(12): 6710-8, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24844402

RESUMEN

In the assessment of the fate and effects of engineered nanomaterials (ENM), the current focus is on studying the pristine, unaltered materials. However, ENM are incorporated into products and are released over the whole product life cycle, though mainly during the use and disposal phases. So far, released ENMs have only been characterized to a limited extent and almost nothing is known about the behavior of these materials under natural conditions. In this work we obtained material that was released from aged paint containing nano-TiO2, characterized the particulate materials, and studied their colloidal stability in media with different pH and ionic composition. A stable suspension was obtained from aged paint powder by gentle shaking in water, producing a dilute suspension of 580 µg/L TiO2 with an average particle size of 200-300 nm. Most particles in this suspension were small pieces of paint matrix that also contained nano-TiO2. Some free nano-TiO2 particles were observed by electron microscopy, but the majority was enclosed by the organic paint binder. The pristine nano-TiO2 showed the expected colloidal behavior with increasing stability with increasing pH and strong agglomeration above the isoelectric point and settling in the presence of Ca. The released TiO2 showed very small variations in particle size, ζ potential, and colloidal stability, even in the presence of 3 mM Ca. The results show that the behavior of released ENM may not necessarily be predicted by studying the pristine materials. Additionally, effect studies need to focus more on the particles that are actually released as we can expect that the toxic effect will also be markedly different between pristine and product released materials.


Asunto(s)
Nanopartículas/química , Pintura/análisis , Titanio/química , Humanos , Luz , Nanopartículas/ultraestructura , Tamaño de la Partícula , Material Particulado/análisis , Polvos , Dispersión de Radiación , Electricidad Estática , Agua/química
4.
Phys Chem Chem Phys ; 15(24): 9620-5, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23673365

RESUMEN

The transformation from the fatuous consumption of fossil energy towards a sustainable energy circle is most easily marketable by not changing the underlying energy carrier but generating it from renewable energy. Hydrocarbons can be principally produced from renewable hydrogen and carbon dioxide collected by biomass. However, research is needed to increase the energetic and economic efficiency of the process. We demonstrate the enhancement of CO2 methanation by sorption enhanced catalysis. The preparation and catalytic activity of sorption catalysts based on Ni particles in zeolites is reported. The functioning of the sorption catalysis is discussed together with the determination of the reaction mechanism, providing implications for new ways in catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA