Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Insects ; 13(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36354804

RESUMEN

The behavior of bees is modulated by the presence of other bees and potentially by the visual information transmitted by the different body positions of bees while visiting flowers. We tested whether bee body position promoted the attraction and/or antagonistic behavior of con- and hetero-specific bees that interacted on prickly pear flowers of Opuntia huajuapensis. To test this, we placed dummy model bees of Apis mellifera and the native Lithurgus littoralis in flowers in three common body positions: alert, feeding, and horizontal. The results showed that dummy model bees in feeding and horizontal body positions attracted A. mellifera bees, while the alert position attracted native male L. littoralis. Male L. littoralis bees spent more time attacking model bees in horizontal and alert positions. The position of dummy bees also influenced response times. Bees of A. mellifera responded fastest to L. littoralis in the alert and horizontal position, male L. littoralis responded fastest to con-specific bees in the alert and feeding position, and female L. littoralis responded fastest to A. mellifera bees in the feeding position. A. mellifera reacted fastest to their con-specific bees in the alert and horizontal body positions. Our results demonstrate, for the first time in bees, that the position of individuals on a floral resource provides important visual information that modulates bee behavior, and illuminates aspects that likely have implications for bees in access to floral resources.

2.
Plants (Basel) ; 11(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35270159

RESUMEN

Until recently, little research has focused on determination of the population dynamics of invasive species and evaluating their genetic variation. Consequently, not much is known of what drives clonal invasive species and their demography. Here, we describe the population dynamics of Kalanchoe delagoensis (Crassulaceae), considered invasive to several countries. We quantified the demography of a population in central Mexico using integral projection models (IPM) in a population that reproduced asexually exclusively through plantlets. The effect of clonal recruitment on population growth rate (λ) was evaluated by changing plantlet survival and simulating management scenarios that used previous data of watering and seven experimental herbicide treatments. The finite rate of population increase indicated that this Kalanchoe delagoensis population is growing (above one) and with water availability, growth rates will only accelerate. The IPM showed that plantlet survival and recruitment were the most critical steps in the cycle for the population, and simulations of different management scenarios showed that reducing plantlet survival significantly decreased λ only in two out of the seven herbicides used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA