Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 527, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714733

RESUMEN

Macrophages are versatile cells of the innate immune system that work by altering their pro- or anti-inflammatory features. Their dysregulation leads to inflammatory disorders such as inflammatory bowel disease. We show that macrophage-specific upregulation of the clock output gene and transcription factor E4BP4 reduces the severity of colitis in mice. RNA-sequencing and single-cell analyses of macrophages revealed that increased expression of E4BP4 leads to an overall increase in expression of anti-inflammatory genes including Il4ra with a concomitant reduction in pro-inflammatory gene expression. In contrast, knockout of E4BP4 in macrophages leads to increased proinflammatory gene expression and decreased expression of anti-inflammatory genes. ChIP-seq and ATAC-seq analyses further identified Il4ra as a target of E4BP4, which drives anti-inflammatory polarization in macrophages. Together, these results reveal a critical role for E4BP4 in regulating macrophage inflammatory phenotypes and resolving inflammatory bowel diseases.


Asunto(s)
Colitis , Macrófagos , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Colitis/patología , Colitis/inducido químicamente , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ratones Noqueados , Fenotipo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Índice de Severidad de la Enfermedad , Masculino , Inflamación/genética , Inflamación/metabolismo
2.
Front Genet ; 15: 1383176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601074

RESUMEN

Introduction: RRAS2, a member of the R-Ras subfamily of Ras-like low-molecular-weight GTPases, is considered to regulate cell proliferation and differentiation via the RAS/MAPK signaling pathway. Seven RRAS2 pathogenic variants have been reported in patients with Noonan syndrome; however, few functional analyses have been conducted. Herein, we report two patients who presented with a Noonan-like phenotype with recurrent and novel RRAS2 pathogenic variants (p.Gly23Val and p.Gly24Glu, respectively) and the results of their functional analysis. Materials and methods: Wild-type (WT) and mutant RRAS2 genes were transiently expressed in Human Embryonic Kidney293 cells. Expression of RRAS2 and phosphorylation of ERK1/2 were confirmed by Western blotting, and the RAS signaling pathway activity was measured using a reporter assay system with the serum response element-luciferase construct. WT and p.Gly23Val RRAS2 were expressed in Drosophila eye using the glass multiple reporter-Gal4 driver. Mutant mRNA microinjection into zebrafish embryos was performed, and the embryo jaws were observed. Results: No obvious differences in the expression of proteins WT, p.Gly23Val, and p.Gly24Glu were observed. The luciferase reporter assay showed that the activity of p.Gly23Val was 2.45 ± 0.95-fold higher than WT, and p.Gly24Glu was 3.06 ± 1.35-fold higher than WT. For transgenic flies, the p.Gly23Val expression resulted in no adults flies emerging, indicating lethality. For mutant mRNA-injected zebrafish embryos, an oval shape and delayed jaw development were observed compared with WT mRNA-injected embryos. These indicated hyperactivity of the RAS signaling pathway. Discussion: Recurrent and novel RRAS2 variants that we reported showed increased in vitro or in vivo RAS signaling pathway activity because of gain-of-function RRAS2 variants. Clinical features are similar to those previously reported, suggesting that RRAS2 gain-of-function variants cause this disease in patients.

3.
PLoS One ; 17(10): e0269077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194562

RESUMEN

Ewing's sarcoma is the second most common bone malignancy in children or young adults and is caused by an oncogenic transcription factor by a chromosomal translocation between the EWSR1 gene and the ETS transcription factor family. However, the transcriptional mechanism of EWS-ETS fusion proteins is still unclear. To identify the transcriptional complexes of EWS-ETS fusion transcription factors, we applied a proximal labeling system called BioID in Ewing's sarcoma cells. We identified AHDC1 as a proximal protein of EWS-ETS fusion proteins. AHDC1 knockdown showed a reduced cell growth and transcriptional activity of EWS-FLI1. AHDC1 knockdown also reduced BRD4 and BRG1 protein levels, both known as interacting proteins of EWS-FLI1. Our results suggest that AHDC1 supports cell growth through EWS-FLI1.


Asunto(s)
Sarcoma de Ewing , Proteínas de Ciclo Celular/metabolismo , Niño , ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Commun Biol ; 2: 364, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602413

RESUMEN

The pineal gland functioning as a photoreceptive organ in non-mammalian species is a serial homolog of the retina. Here we found that Brain-specific homeobox (Bsx) is a key regulator conferring individuality on the pineal gland between the two serially homologous photoreceptive organs in zebrafish. Bsx knock-down impaired the pineal development with reduced expression of exorh, the pineal-specific gene responsible for the photoreception, whereas it induced ectopic expression of rho, a retina-specific gene, in the pineal gland. Bsx remarkably transactivated the exorh promoter in combination with Otx5, but not with Crx, through its binding to distinct subtypes of PIRE, a DNA cis-element driving Crx/Otx-dependent pineal-specific gene expression. These results demonstrate that the identity of pineal photoreceptive neurons is determined by the combinatorial code of Bsx and Otx5, the former confers the pineal specificity at the tissue level and the latter determines the photoreceptor specificity at the cellular level.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Glándula Pineal/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción Otx/metabolismo , Factor de Transcripción PAX6/metabolismo , Glándula Pineal/citología , Glándula Pineal/crecimiento & desarrollo , Regiones Promotoras Genéticas , Rodopsina/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Sci Rep ; 9(1): 196, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655599

RESUMEN

The circadian clock generates behavioral rhythms to maximize an organism's physiological efficiency. Light induces the formation of these rhythms by synchronizing cellular clocks. In zebrafish, the circadian clock components Period2 (zPER2) and Cryptochrome1a (zCRY1a) are light-inducible, however their physiological functions are unclear. Here, we investigated the roles of zPER2 and zCRY1a in regulating locomotor activity and behavioral rhythms. zPer2/zCry1a double knockout (DKO) zebrafish displayed defects in total locomotor activity and in forming behavioral rhythms when briefly exposed to light for 3-h. Exposing DKO zebrafish to 12-h light improved behavioral rhythm formation, but not total activity. Our data suggest that the light-inducible circadian clock regulator zCRY2a supports rhythmicity in DKO animals exposed to 12-h light. Single cell imaging analysis revealed that zPER2, zCRY1a, and zCRY2a function in synchronizing cellular clocks. Furthermore, microarray analysis of DKO zebrafish showed aberrant expression of genes involved regulating cellular metabolism, including ATP production. Overall, our results suggest that zPER2, zCRY1a and zCRY2a help to synchronize cellular clocks in a light-dependent manner, thus contributing to behavioral rhythm formation in zebrafish. Further, zPER2 and zCRY1a regulate total physical activity, likely via regulating cellular energy metabolism. Therefore, these circadian clock components regulate the rhythmicity and amount of locomotor behavior.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proteínas CLOCK/fisiología , Criptocromos/fisiología , Luz , Locomoción , Proteínas Circadianas Period/fisiología , Análisis de la Célula Individual , Proteínas de Pez Cebra/fisiología
6.
Methods Mol Biol ; 1893: 167-181, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30565134

RESUMEN

The transcription coactivator, Yes-associated protein (YAP), which is a nuclear effector of the Hippo signaling pathway, has been shown to be a mechano-transducer. By using mutant fish and human 3D spheroids, we have recently demonstrated that YAP is also a mechano-effector. YAP functions in three-dimensional (3D) morphogenesis of organ and global body shape by controlling actomyosin-mediated tissue tension. In this chapter, we present a platform that links the findings in fish embryos with human cells. The protocols for analyzing tissue tension-mediated global body shape/organ morphogenesis in vivo and ex vivo using medaka fish embryos and in vitro using human cell spheroids represent useful tools for unraveling the molecular mechanisms by which YAP functions in regulating global body/organ morphogenesis.


Asunto(s)
Desarrollo Embrionario/genética , Morfogénesis/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Mutación , Proteínas Nucleares/metabolismo , Oryzias , Esferoides Celulares , Factores de Transcripción/metabolismo
7.
Curr Opin Cell Biol ; 49: 64-70, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29253723

RESUMEN

Cells of terrestrial animals are constantly exposed to external forces including gravity. However, the complex 3D structure of the body and its organs form without being flattened. A century ago, the mathematical biologist D'Arcy Thompson predicted in 'On Growth and Form' that terrestrial animal body shapes are entirely conditioned by gravity [1], but the prediction remained to be proved due to the lack of an appropriate animal model. In this review, we outline a new mechanism of morphogenesis which ensures the generation of vertebrate 3D body shape that can withstand gravity and in which Hippo-YAP signaling acts as a mechano-effector controlling mechano-homeostasis. We will highlight the recent papers that advanced the field and discuss the impact of this previously unrecognized function of YAP-mediated signaling on the established concept of organogenesis, tissue homeostasis and disease.


Asunto(s)
Homeostasis/genética , Modelos Biológicos , Proteínas Nucleares/genética , Organogénesis/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
8.
Dev Growth Differ ; 59(1): 52-58, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28093734

RESUMEN

Cells of our body are constantly exposed to physical forces such as tissue tension. In recent years, it has been shown that such mechanical signals greatly influence a number of cellular processes, including proliferation, differentiation, and migration. Conversely, cells maintain the mechanical properties of tissues by remodeling their own extracellular environment. To date, however, it is unclear about the molecular mechanisms to maintain the mechanical environment ("mechano-homeostasis") in which extracellular mechanical cues are integrated with cell proliferation and differentiation to ensure tissue, organ and body form. In this review, we outline the molecular basis of mechanotransduction, and overview some useful techniques for measuring cellular tension. In the latter part, we describe our recent finding that a transcriptional cofactor YAP plays a crucial role in three-dimensional organ formation and its maintenance by controlling tissue tension, and functions as a key molecule governing mechano-homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Embrión de Mamíferos/embriología , Mecanotransducción Celular/fisiología , Organogénesis/fisiología , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Embrión de Mamíferos/citología , Humanos , Fosfoproteínas/genética , Factores de Transcripción , Proteínas Señalizadoras YAP
9.
Sci Rep ; 6: 37697, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27883036

RESUMEN

The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation.


Asunto(s)
Redes y Vías Metabólicas , Ácido Mevalónico/metabolismo , Línea Primitiva/embriología , Línea Primitiva/metabolismo , Prenilación de Proteína , Animales , Diferenciación Celular , Regulación hacia Abajo/genética , Cuerpos Embrioides , Regulación del Desarrollo de la Expresión Génica , Metaboloma , Metabolómica , Ratones Endogámicos ICR , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neurogénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Organogénesis , Pez Cebra
10.
Biochem Biophys Res Commun ; 474(1): 146-153, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27105919

RESUMEN

The precise government of the left-right (LR) specification of an organ is an essential aspect of its morphogenesis. Multiple signaling cascades have been implicated in the establishment of vertebrate LR asymmetry. Recently, mTOR signaling was found to critically regulate the development of LR asymmetry in zebrafish. However, the upstream factor(s) that activate mTOR signaling in the context of LR specification are as yet unknown. In this study, we identify the SLC7 amino acid transporters Slc7a7 and Slc7a8 as novel regulators of LR asymmetry development in the small fish medaka. Knockdown of Slc7a7 and/or Slc7a8 in medaka embryos disrupted LR organ asymmetries. Depletion of Slc7a7 hindered left-sided expression of the southpaw (spaw) gene, which is responsible for LR axis determination. Work at the cellular level revealed that Slc7a7 coordinates ciliogenesis in the epithelium of Kupffer's vesicle and thereby the generation of the nodal fluid flow required for LR asymmetry. Interestingly, knockdown of Slc7a7 depressed mTOR signaling activity in medaka embryos. Treatment with rapamycin, an inhibitor of mTOR signaling, together with Slc7a7 knockdown synergistically perturbed spaw expression, indicating an interaction between Slc7a7 and mTOR signaling affecting gene expression required for LR specification. Taken together, our results demonstrate that Slc7a7 governs the regulation of LR asymmetry development via the activation of mTOR signaling.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/metabolismo , Organogénesis/fisiología , Oryzias/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Sistema de Transporte de Aminoácidos y+L , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA