Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 5928, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739937

RESUMEN

Massive river interlinking projects are proposed to offset observed increasing droughts and floods in India, the most populated country in the world. These projects involve water transfer from surplus to deficit river basins through reservoirs and canals without an in-depth understanding of the hydro-meteorological consequences. Here, we use causal delineation techniques, a coupled regional climate model, and multiple reanalysis datasets, and show that land-atmosphere feedbacks generate causal pathways between river basins in India. We further find that increased irrigation from the transferred water reduces mean rainfall in September by up to 12% in already water-stressed regions of India. We observe more drying in La Niña years compared to El Niño years. Reduced September precipitation can dry rivers post-monsoon, augmenting water stress across the country and rendering interlinking dysfunctional. Our findings highlight the need for model-guided impact assessment studies of large-scale hydrological projects across the globe.

3.
Sci Rep ; 12(1): 13037, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906464

RESUMEN

A cross-equatorial low-level wind, known as Findlater Jet (FJ), modulates the thermocline in the Arabian Sea (AS) during summer monsoon (June to September). By analysing ocean and atmospheric data, we show that the FJ signal gets 'trapped' in the AS in the form of upper ocean heat content till the following winter months (December to February). This memory is the consequence of the combined effect of FJ-induced wind stress curl and the annual downwelling Rossby waves in the AS. During the summer monsoon months, the strong low-level westerly winds cause a negative wind stress curl in the south of the FJ axis over the central AS, resulting in a deep thermocline and high magnitude of heat being trapped. In winter monsoon months, though the wind stress curl is positive over large parts of the AS and could potentially shoal the thermocline and reduce the upper ocean heat content in the central AS, this does not happen due to two reasons. Firstly, winds are weaker, and spread over a larger area over the AS making the magnitude of the wind stress curl low. Secondly, westward propagating downwelling Rossby wave radiated from the eastern AS deepens the thermocline and prevents ventilation of the trapped heat. During the following spring, the collapse of the Rossby waves leads to the shoaling and mixing of underlying waters with surface waters thereby resurfacing of the trapped heat. The resurfacing of the trapped heat makes the AS a memory bank of the FJ induced signal.

4.
Nat Commun ; 6: 7423, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077934

RESUMEN

There are large uncertainties looming over the status and fate of the South Asian summer monsoon, with several studies debating whether the monsoon is weakening or strengthening in a changing climate. Our analysis using multiple observed datasets demonstrates a significant weakening trend in summer rainfall during 1901-2012 over the central-east and northern regions of India, along the Ganges-Brahmaputra-Meghna basins and the Himalayan foothills, where agriculture is still largely rain-fed. Earlier studies have suggested an increase in moisture availability and land-sea thermal gradient in the tropics due to anthropogenic warming, favouring an increase in tropical rainfall. Here we show that the land-sea thermal gradient over South Asia has been decreasing, due to rapid warming in the Indian Ocean and a relatively subdued warming over the subcontinent. Using long-term observations and coupled model experiments, we provide compelling evidence that the enhanced Indian Ocean warming potentially weakens the land-sea thermal contrast, dampens the summer monsoon Hadley circulation, and thereby reduces the rainfall over parts of South Asia.

5.
Sci Rep ; 4: 6087, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25124737

RESUMEN

The Intertropical Convergence Zone (ITCZ) in the tropical eastern Indian Ocean exhibits strong interannual variability, often co-occurring with positive Indian Ocean Dipole (pIOD) events. During what we identify as an extreme ITCZ event, a drastic northward shift of atmospheric convection coincides with an anomalously strong north-minus-south sea surface temperature (SST) gradient over the eastern equatorial Indian Ocean. Such shifts lead to severe droughts over the maritime continent and surrounding islands but also devastating floods in southern parts of the Indian subcontinent. Understanding future changes of the ITCZ is therefore of major scientific and socioeconomic interest. Here we find a more-than-doubling in the frequency of extreme ITCZ events under greenhouse warming, estimated from climate models participating in the Coupled Model Intercomparison Project phase 5 that are able to simulate such events. The increase is due to a mean state change with an enhanced north-minus-south SST gradient and a weakened Walker Circulation, facilitating smaller perturbations to shift the ITCZ northwards.

6.
Nature ; 510(7504): 254-8, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24919920

RESUMEN

The Indian Ocean dipole is a prominent mode of coupled ocean-atmosphere variability, affecting the lives of millions of people in Indian Ocean rim countries. In its positive phase, sea surface temperatures are lower than normal off the Sumatra-Java coast, but higher in the western tropical Indian Ocean. During the extreme positive-IOD (pIOD) events of 1961, 1994 and 1997, the eastern cooling strengthened and extended westward along the equatorial Indian Ocean through strong reversal of both the mean westerly winds and the associated eastward-flowing upper ocean currents. This created anomalously dry conditions from the eastern to the central Indian Ocean along the Equator and atmospheric convergence farther west, leading to catastrophic floods in eastern tropical African countries but devastating droughts in eastern Indian Ocean rim countries. Despite these serious consequences, the response of pIOD events to greenhouse warming is unknown. Here, using an ensemble of climate models forced by a scenario of high greenhouse gas emissions (Representative Concentration Pathway 8.5), we project that the frequency of extreme pIOD events will increase by almost a factor of three, from one event every 17.3 years over the twentieth century to one event every 6.3 years over the twenty-first century. We find that a mean state change--with weakening of both equatorial westerly winds and eastward oceanic currents in association with a faster warming in the western than the eastern equatorial Indian Ocean--facilitates more frequent occurrences of wind and oceanic current reversal. This leads to more frequent extreme pIOD events, suggesting an increasing frequency of extreme climate and weather events in regions affected by the pIOD.


Asunto(s)
Efecto Invernadero , Modelos Teóricos , Océano Índico , Lluvia , Estaciones del Año , Agua de Mar/análisis , Temperatura
7.
Nature ; 461(7263): 481-4, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19779440
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...