Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 82019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31084710

RESUMEN

Two-dimensional (2D) human skeletal muscle fiber cultures are ill-equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-cultures. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. Hence, this work offers a simple method to model and evaluate adult human NMJ de novo development or disease in culture.


Asunto(s)
Técnicas de Cocultivo/métodos , Músculo Esquelético/fisiología , Unión Neuromuscular/fisiología , Técnicas de Cultivo de Órganos/métodos , Humanos , Neuronas Motoras/fisiología , Células Musculares/fisiología
2.
Elife ; 72018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30371350

RESUMEN

Human pluripotent stem cell (hPSC)-derived neural organoids display unprecedented emergent properties. Yet in contrast to the singular neuroepithelial tube from which the entire central nervous system (CNS) develops in vivo, current organoid protocols yield tissues with multiple neuroepithelial units, a.k.a. neural rosettes, each acting as independent morphogenesis centers and thereby confounding coordinated, reproducible tissue development. Here, we discover that controlling initial tissue morphology can effectively (>80%) induce single neural rosette emergence within hPSC-derived forebrain and spinal tissues. Notably, the optimal tissue morphology for observing singular rosette emergence was distinct for forebrain versus spinal tissues due to previously unknown differences in ROCK-mediated cell contractility. Following release of geometric confinement, the tissues displayed radial outgrowth with maintenance of a singular neuroepithelium and peripheral neuronal differentiation. Thus, we have identified neural tissue morphology as a critical biophysical parameter for controlling in vitro neural tissue morphogenesis furthering advancement towards biomanufacture of CNS tissues with biomimetic anatomy and physiology.


Asunto(s)
Diferenciación Celular , Técnicas de Cultivo de Órganos/métodos , Células Madre Pluripotentes/fisiología , Prosencéfalo/citología , Médula Espinal/citología , Fenómenos Biofísicos , Humanos , Morfogénesis
3.
Stem Cells ; 32(4): 1032-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24357014

RESUMEN

The embryonic neuroepithelium gives rise to the entire central nervous system in vivo, making it an important tissue for developmental studies and a prospective cell source for regenerative applications. Current protocols for deriving homogenous neuroepithelial cultures from human pluripotent stem cells (hPSCs) consist of either embryoid body-mediated neuralization followed by a manual isolation step or adherent differentiation using small molecule inhibitors. Here, we report that hPSCs maintained under chemically defined, feeder-independent, and xeno-free conditions can be directly differentiated into pure neuroepithelial cultures ([mt]90% Pax6(+)/N-cadherin(+) with widespread rosette formation) within 6 days under adherent conditions, without small molecule inhibitors, and using only minimalistic medium consisting of Dulbecco's modified Eagle's medium/F-12, sodium bicarbonate, selenium, ascorbic acid, transferrin, and insulin (i.e., E6 medium). Furthermore, we provide evidence that the defined culture conditions enable this high level of neural conversion in contrast to hPSCs maintained on mouse embryonic fibroblasts (MEFs). In addition, hPSCs previously maintained on MEFs could be rapidly converted to a neural compliant state upon transfer to these defined conditions while still maintaining their ability to generate all three germ layers. Overall, this fully defined and scalable protocol should be broadly useful for generating therapeutic neural cells for regenerative applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Células Neuroepiteliales , Células Madre Pluripotentes , Animales , Línea Celular , Técnicas de Cocultivo , Medios de Cultivo/química , Células Nutrientes/citología , Células Nutrientes/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA