Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 366: 761-782, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219913

RESUMEN

The emergence of COVID-19 has posed an unprecedented global health crisis, challenging the healthcare systems worldwide. Amidst the rapid development of several vaccine formulations, protein subunit vaccines have emerged as a promising approach. This article provides an in-depth evaluation of the role of protein subunit vaccines in the management of COVID-19. Leveraging viral protein fragments, particularly the spike protein from SARS-CoV-2, these vaccines elicit a targeted immune response without the risk of inducing disease. Notably, the robust safety profile of protein subunit vaccines makes them a compelling candidate in the management of COVID-19. Various innovative approaches, including reverse vaccinology, virus like particles, and recombinant modifications are incorporated to develop protein subunit vaccines. In addition, the utilization of advanced manufacturing techniques facilitates large-scale production, ensuring widespread distribution. Despite these advancements, challenges persist, such as the requirement for cold-chain storage and the necessity for booster doses. This article evaluates the formulation and applications of protein subunit vaccines, providing a comprehensive overview of their clinical development and approvals in the context of COVID-19. By addressing the current status and challenges, this review aims to contribute to the ongoing discourse on optimizing protein subunit vaccines for effective pandemic control.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Vacunas de Subunidades Proteicas , Criopreservación , Pandemias
2.
Int J Biol Macromol ; 254(Pt 2): 127799, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923037

RESUMEN

A significant portion of brain-tumor patients suffer from 'brain-tumor-related epilepsy (BTE)' which results in depression, anxiety and hampered quality of life. Conventional anti-epileptic drugs indicate negative interaction with other drugs augmenting the poor outcome of overall therapy. Levetiracetam (LVM) has evidenced effectiveness for BTE but its hydrophilicity restricts the passage into blood-brain barrier. The majority of lipid nanoparticles fails to load hydrophilic drug sufficiently. Therefore, lipid-drug conjugates (LDC) were synthesized using stearic acid via amide bond formation confirmed by FTIR and NMR. The nanoparticles of synthesized LDC were prepared by solvent injection method followed by functionalization with Apolipoprotein E3 (ApoE3@LDC-NP). The nanoparticles were characterized by DSC, XRD, particle size (131.6 ± 1.24 nm), zeta potential (-15.6 ± 0.09 mV), and for storage stability. In-vitro release study indicated initial burst release of 20 ± 0.63 % followed by sustained release up to 30 h (66 ± 1.40 %) for ApoE3@LDC-NP. The cell-line study on HEK293 indicated no significant cytotoxic effect and greater cell uptake through U87MG cell line. The pharmacokinetic and bio-distribution study indicated 2.5-fold greater brain-targeting of ApoE3@LDC-NP as compared to LVM solution. It proved safe in the haemolysis study and exhibited the absence of tissue necrosis. Thus, ApoE3@LDC-NP might be a promising approach for effective brain-targeting of LVM for improved clinical response in BTE.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Humanos , Apolipoproteína E3/metabolismo , Levetiracetam/farmacología , Levetiracetam/metabolismo , Levetiracetam/uso terapéutico , Células HEK293 , Calidad de Vida , Encéfalo/metabolismo , Liposomas/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos
3.
Viruses ; 14(4)2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35458489

RESUMEN

The "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" is the third member of human coronavirus (CoV) that is held accountable for the current "coronavirus disease 2019 (COVID-19)" pandemic. In the past two decades, the world has witnessed the emergence of two other similar CoVs, namely SARS-CoV in 2002 and MERS-CoV in 2013. The extent of spread of these earlier versions was relatively low in comparison to SARS-CoV-2. Despite having numerous reports inclined towards the zoonotic origin of the virus, one cannot simply sideline the fact that no animal originated CoV is thus far identified that is considered similar to the initial edition of SARS-CoV-2; however, under-sampling of the diverse variety of coronaviruses remains a concern. Vaccines are proved to be an effective tool for bringing the end to such a devastating pandemic. Many vaccine platforms are explored for the same but in this review paper, we will discuss the potential of replicating viral vectors as vaccine carriers for SARS-CoV-2.


Asunto(s)
COVID-19 , Vacunas Virales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...