Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 19(1): 16, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793137

RESUMEN

BACKGROUND: Lignocellulosic biomass is a complex network of polysaccharides and lignin that requires a pretreatment step to overcome recalcitrance and optimize valorisation into biobased products. Pretreatment of biomass induces chemical and morphological changes. Quantification of these changes is critical to understand biomass recalcitrance and to predict lignocellulose reactivity. In this study, we propose an automated method for the quantification of chemical and morphological parameters through fluorescence macroscopy, which was applied on wood samples (spruce, beechwood) pretreated with steam explosion. RESULTS: Results in fluorescence macroscopy highlighted the impact of steam explosion on spruce and beechwood: fluorescence intensity of samples was highly altered, especially for the most severe conditions. Morphological changes were also revealed: shrinkage of cells and deformation of cell walls manifested as the loss of rectangularity or circular shape, for tracheids in spruce and vessels in beechwood respectively. Quantification of fluorescence intensity of cell walls and quantification of morphological parameters related to cell lumens were carried out accurately by applying the automated method onto the macroscopic images. The results showed that lumens area and circularity could be considered as complementary markers of cell deformation, and that fluorescence intensity of the cell walls could be related to morphological changes and to the conditions of pretreatment. CONCLUSIONS: The developed procedure allows simultaneous and effective quantification of morphological parameters and fluorescence intensity of the cell walls. This approach can be applied to fluorescence macroscopy as well as other imaging techniques and provides encouraging results towards the understanding of biomass architecture.

2.
Chem Sci ; 11(35): 9685-9690, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34094233

RESUMEN

We report herein the first all-donor aromatic [2]catenane formed through dynamic combinatorial chemistry, using single component libraries. The building block is a benzo[1,2-b:4,5-b']dithiophene derivative, a π-donor molecule, with cysteine appendages that allow for disulfide exchange. The hydrophobic effect plays an essential role in the formation of the all-donor [2]catenane. The design of the building block allows the formation of a quasi-fused pentacyclic core, which enhances the stacking interactions between the cores. The [2]catenane has chiro-optical and fluorescent properties, being also the first known DCC-disulphide-based interlocked molecule to be fluorescent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...