Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; : 124486, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033940

RESUMEN

Cutaneous leishmaniasis, caused by Leishmania parasites, requires treatments with fewer side effects than those currently available. The development of a topical solution based on amphotericin B (AmB) was pursued. The considerable interest in deep eutectic solvents (DESs) and their remarkable advantages inspired the search for a suitable hydrophobic excipient. Various mixtures based on commonly used hydrogen bond donors (HBDs) and acceptors (HBAs) for DES preparations were explored. Initial physical and in-vitro screenings showed the potential of quaternary phosphonium salt-based mixtures. Through thermal analysis, it was determined that most of these mixtures did not exhibit eutectic behavior. X-ray scattering studies revealed a sponge-like nanoscale structure. The most promising formulation, based on a combination of trihexyl(tetradecyl)phosphonium chloride and 1-oleoyl-rac-glycerol, showed no deleterious effects through histological evaluation. AmB was fully solubilized at concentrations between 0.5 and 0.8 mg·mL-1, depending on the formulation. The monomeric state of AmB was observed by circular dichroism. In-vitro irritation tests demonstrated acceptable viability for AmB-based formulations up to 0.5 mg·mL-1. Additionally, an ex-vivo penetration study on pig ear skin revealed no transcutaneous passage, confirming AmB retention in healthy, unaffected skin.

2.
Int J Pharm ; 651: 123723, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38110013

RESUMEN

Although amphiphilic cyclodextrin derivatives (ACDs) serve as valuable building blocks for nanomedicine formulations, their widespread production still encounters various challenges, limiting large-scale manufacturing. This work focuses on a robust alternative pathway using mineral base catalysis to transesterify ß-cyclodextrin with long-chain vinyl esters, yielding ACD with modular and controlled hydrocarbon chain grafting. ACDs with a wide range of degrees of substitution (DS) were reliably synthesized, as indicated by extensive physicochemical characterization, including MALDI-TOF mass spectrometry. The influence of various factors, including the type of catalyst and the length of the hydrocarbon moiety of the vinyl ester, was studied in detail. ACDs were assessed for their ability to form colloidal suspensions by nanoprecipitation, with or without PEGylated phospholipid. Small-angle X-ray scattering and cryo-electron microscopy revealed the formation of nanoparticles with distinct ultrastructures depending on the DS: an onion-like structure for low and very high DS, and reversed hexagonal organization for DS between 4.5 and 6.1. We confirmed the furtivity of the PEGylated versions of the nanoparticles through complement activation experiments and that they were well tolerated in-vivo on a zebrafish larvae model after intravenous injection. Furthermore, a biodistribution experiment showed that the nanoparticles left the bloodstream within 10 h after injection and were phagocytosed by macrophages.


Asunto(s)
Ciclodextrinas , Nanopartículas , Animales , Ciclodextrinas/química , Microscopía por Crioelectrón/métodos , Distribución Tisular , Pez Cebra , Nanopartículas/química , Ésteres , Hidrocarburos , Polietilenglicoles
3.
J Colloid Interface Sci ; 537: 704-715, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30497059

RESUMEN

Dequalinium (DQ) has been proposed as a mitochondrial targeting ligand for nanomedicines, including liposomes, given the implication of these organelles in many diseases. This original study focuses on the interactions of DQ with phosphatidylcholine bilayers during the formation of liposomes. Firstly, PEGylated liposomes suitable for drug delivery were studied and were found to be more stable when made in water than in phosphate-buffered saline, emphasizing the role of electrostatic interactions between positive charges on DQ and the polar head groups of the lipids. To gain more information, differential scanning calorimetry, small- and wide-angle X-ray scattering and diffraction, 31P and 2H NMR spectroscopy and freeze-fracture electron microscopy were performed on dimyristoylphosphatidylcholine (DMPC) model membranes in the presence of DQ. This molecule was shown to be located at the level of polar head groups and to induce electrostatic repulsions between adjacent lipid bilayers leading to membrane budding in water. These findings indicate that DQ is not completely inert towards lipid membranes and therefore is not an ideal candidate for encapsulation in liposomes. Overall, our work stresses the necessity for thorough physico-chemical characterization to better understand the mechanisms underlying the development of nanomedicines.


Asunto(s)
Decualinio/química , Membrana Dobles de Lípidos/química , Lípidos/química , Mitocondrias/química , Nanomedicina , Fosfatidilcolinas/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...