Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 16(9): 1248-56, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23892553

RESUMEN

Neurotrophin receptors corresponding to vertebrate Trk, p75(NTR) or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogs unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit flies. Toll-6 and Toll-7 are expressed in the CNS throughout development and regulate locomotion, motor axon targeting and neuronal survival. DNT1 (also known as NT1 and spz2) and DNT2 (also known as NT2 and spz5) interact genetically with Toll-6 and Toll-7, and DNT1 and DNT2 bind to Toll-6 and Toll-7 promiscuously and are distributed in vivo in domains complementary to or overlapping with those of Toll-6 and Toll-7. We conclude that in fruit flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families.


Asunto(s)
Sistema Nervioso Central , Regulación del Desarrollo de la Expresión Génica/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptor Toll-Like 6/metabolismo , Receptor Toll-Like 7/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Larva , Locomoción/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Unión Proteica/genética , ARN Mensajero/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptor Toll-Like 6/genética , Receptor Toll-Like 7/genética , Transfección
2.
J Biol Chem ; 280(39): 33453-60, 2005 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-16009712

RESUMEN

Nerve growth factor (NGF) is the ligand for two unrelated cellular receptors, TrkA and p75(NTR), and acts as a mediator in the development and maintenance of the mammalian nervous system. Signaling through TrkA kinase domains promotes neuronal survival, whereas activation of the p75(NTR) "death domains" induces apoptosis under correct physiological conditions. However, co-expression of these receptors leads to enhanced neuronal survival upon NGF stimulation, possibly through a ternary p75(NTR) x NGF x TrkA complex. We have expressed human p75(NTR) ligand binding domain as a secreted glycosylated protein in Trichoplusia ni cells. Following assembly and purification of soluble p75(NTR) x NGF complexes, mass spectrometry, analytical ultracentrifugation, and solution x-ray scattering measurements are indicative of 2:2 stoichiometry, which implies a symmetric complex. Molecular models of the 2:2 p75(NTR) x NGF complex based on these data are not consistent with the further assembly of either symmetric (2:2:2) or asymmetric (2:2:1) ternary p75(NTR) x NGF x TrkA complexes.


Asunto(s)
Factor de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/química , Receptor de Factor de Crecimiento Nervioso/metabolismo , Cromatografía en Gel , Simulación por Computador , Cisteína/química , Humanos , Luz , Espectrometría de Masas , Modelos Moleculares , Peso Molecular , Factor de Crecimiento Nervioso/química , Estructura Terciaria de Proteína , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/aislamiento & purificación , Receptor trkA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Dispersión de Radiación , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ultracentrifugación
3.
FEMS Microbiol Rev ; 28(3): 335-52, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15449607

RESUMEN

We assess the use to which bioinformatics in the form of bacterial genome sequences, functional gene probes and the protein sequence databases can be applied to hypotheses about obligate autotrophy in eubacteria. Obligate methanotrophy and obligate autotrophy among the chemo- and photo-lithotrophic bacteria lack satisfactory explanation a century or more after their discovery. Various causes of these phenomena have been suggested, which we review in the light of the information currently available. Among these suggestions is the absence in vivo of a functional alpha-ketoglutarate dehydrogenase. The advent of complete and partial genome sequences of diverse autotrophs, methylotrophs and methanotrophs makes it possible to probe the reasons for the absence of activity of this enzyme. We review the role and evolutionary origins of the Krebs cycle in relation to autotrophic metabolism and describe the use of in silico methods to probe the partial and complete genome sequences of a variety of obligate genera for genes encoding the subunits of the alpha-ketoglutarate dehydrogenase complex. Nitrosomonas europaea and Methylococcus capsulatus, which lack the functional enzyme, were found to contain the coding sequences for the E1 and E2 subunits of alpha-ketoglutarate dehydrogenase. Comparing the predicted physicochemical properties of the polypeptides coded by the genes confirmed the putative gene products were similar to the active alpha-ketoglutarate dehydrogenase subunits of heterotrophs. These obligate species are thus genomically competent with respect to this enzyme but are apparently incapable of producing a functional enzyme. Probing of the full and incomplete genomes of some cyanobacterial and methanogenic genera and Aquifex confirms or suggests the absence of the genes for at least one of the three components of the alpha-ketoglutarate dehydrogenase complex in these obligate organisms. It is recognized that absence of a single functional enzyme may not explain obligate autotrophy in all cases and may indeed be only be one of a number of controls that impose obligate metabolism. Availability of more genome sequences from obligate genera will enable assessment of whether obligate autotrophy is due to the absence of genes for a few or many steps in organic compound metabolism. This problem needs the technologies and mindsets of the present generation of molecular microbiologists to resolve it.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Bioquímica/tendencias , Biología Molecular/tendencias , Archaea/genética , Archaea/metabolismo , Evolución Biológica , Ciclo del Ácido Cítrico/genética , Biología Computacional/tendencias , Bases de Datos Genéticas , Genoma Bacteriano , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Modelos Biológicos
4.
J Mol Biol ; 340(5): 965-79, 2004 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-15236960

RESUMEN

The hydrolytic endoribonuclease RNase E, which is widely distributed in bacteria and plants, plays key roles in mRNA degradation and RNA processing in Escherichia coli. The enzymatic activity of RNase E is contained within the conserved amino-terminal half of the 118 kDa protein, and the carboxy-terminal half organizes the RNA degradosome, a multi-enzyme complex that degrades mRNA co-operatively and processes ribosomal and other RNA. The study described herein demonstrates that the carboxy-terminal domain of RNase E has little structure under native conditions and is unlikely to be extensively folded within the degradosome. However, three isolated segments of 10-40 residues, and a larger fourth segment of 80 residues, are predicted to be regions of increased structural propensity. The larger of these segments appears to be a protein-RNA interaction site while the other segments possibly correspond to sites of self-recognition and interaction with the other degradosome proteins. The carboxy-terminal domain of RNase E may thus act as a flexible tether of the degradosome components. The implications of these and other observations for the organization of the RNA degradosome are discussed.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Escherichia coli/enzimología , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Bacteriano/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dicroismo Circular , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Escherichia coli/genética , Datos de Secuencia Molecular , Fosfopiruvato Hidratasa/aislamiento & purificación , Fosfopiruvato Hidratasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/química , Proteínas de Unión al ARN/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...