Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39345584

RESUMEN

Spinocerebellar ataxia type 5 (SCA5) mutations in the protein ß-III-spectrin cluster to the N-terminal actin-binding domain (ABD) and the central spectrin-repeat domains (SRDs). We previously reported that a common molecular consequence of ABD-localized SCA5 mutations is increased actin binding. However, little is known about the molecular consequences of the SRD-localized mutations. It is known that the SRDs of ß-spectrin proteins interact with α-spectrin to form an α/ß-spectrin dimer. In addition, it is known that SRDs neighbouring the ß-spectrin ABD enhance actin binding. Here, we tested the impact of the SRD-localized R480W and the E532_M544del mutations on the binding of ß-III-spectrin to α-II-spectrin and actin. Using multiple experimental approaches, we show that both the R480W and E532_M544del mutants can bind α-II-spectrin. However, E532_M544del causes partial uncoupling of complementary SRDs in the α/ß-spectrin dimer. Further, the R480W mutant forms large intracellular inclusions when co-expressed with α-II-spectrin in cells, supporting that R480W mutation grossly disrupts the α-II/ß-III-spectrin physical complex. Moreover, actin-binding assays show that E532_M544del, but not R480W, increases ß-III-spectrin actin binding. Altogether, these data support that SRD-localized mutations alter key interactions of ß-III-spectrin with α-II-spectrin and actin.

2.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626910

RESUMEN

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the SPTBN2 gene encoding the cytoskeletal protein ß-III-spectrin. Previously, we demonstrated that a L253P missense mutation, localizing to the ß-III-spectrin actin-binding domain (ABD), causes increased actin-binding affinity. Here we investigate the molecular consequences of nine additional ABD-localized, SCA5 missense mutations: V58M, K61E, T62I, K65E, F160C, D255G, T271I, Y272H, and H278R. We show that all of the mutations, similar to L253P, are positioned at or near the interface of the two calponin homology subdomains (CH1 and CH2) comprising the ABD. Using biochemical and biophysical approaches, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all nine mutations are destabilizing, suggesting a structural disruption at the CH1-CH2 interface. Importantly, all nine mutations cause increased actin binding. The mutant actin-binding affinities vary greatly, and none of the nine mutations increase actin-binding affinity as much as L253P. ABD mutations causing high-affinity actin binding, with the notable exception of L253P, appear to be associated with an early age of symptom onset. Altogether, the data indicate that increased actin-binding affinity is a shared molecular consequence of numerous SCA5 mutations, which has important therapeutic implications.


Asunto(s)
Actinas , Ataxias Espinocerebelosas , Humanos , Actinas/genética , Espectrina/genética , Mutación/genética , Mutación Missense , Ataxias Espinocerebelosas/genética
3.
Biochem Biophys Res Commun ; 670: 12-18, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37271035

RESUMEN

Hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM) are characterized by thickening, thinning, or stiffening, respectively, of the ventricular myocardium, resulting in diastolic or systolic dysfunction that can lead to heart failure and sudden cardiac death. Recently, variants in the ACTN2 gene, encoding the protein α-actinin-2, have been reported in HCM, DCM, and RCM patients. However, functional data supporting the pathogenicity of these variants is limited, and potential mechanisms by which these variants cause disease are largely unexplored. Currently, NIH ClinVar lists 34 ACTN2 missense variants, identified in cardiomyopathy patients, which we predict are likely to disrupt actin binding, based on their localization to specific substructures in the α-actinin-2 actin binding domain (ABD). We investigated the molecular consequences of three ABD localized, HCM-associated variants: A119T, M228T and T247 M. Using circular dichroism, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all three mutations are destabilizing, suggesting a structural disruption. Importantly, A119T decreased actin binding, and M228T and T247M cause increased actin binding. We suggest that altered actin binding underlies pathogenesis for cardiomyopathy mutations localizing to the ABD of α-actinin-2.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Humanos , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Mutación
4.
bioRxiv ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36865188

RESUMEN

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the SPTBN2 gene encoding the cytoskeletal protein ß-III-spectrin. Previously, we demonstrated that a L253P missense mutation, localizing to the ß-III-spectrin actin-binding domain (ABD), causes increased actin-binding affinity. Here we investigate the molecular consequences of nine additional ABD-localized, SCA5 missense mutations: V58M, K61E, T62I, K65E, F160C, D255G, T271I, Y272H, and H278R. We show that all of the mutations, similar to L253P, are positioned at or near the interface of the two calponin homology subdomains (CH1 and CH2) comprising the ABD. Using biochemical and biophysical approaches, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all nine mutations are destabilizing, suggesting a structural disruption at the CH1-CH2 interface. Importantly, all nine mutations cause increased actin binding. The mutant actin-binding affinities vary greatly, and none of the nine mutations increase actin-binding affinity as much as L253P. ABD mutations causing high-affinity actin binding, with the notable exception of L253P, appear to be associated with early age of symptom onset. Altogether, the data indicate increased actin-binding affinity is a shared molecular consequence of numerous SCA5 mutations, which has important therapeutic implications.

5.
J Biol Chem ; 299(3): 102956, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731793

RESUMEN

ß-III-Spectrin is a key cytoskeletal protein that localizes to the soma and dendrites of cerebellar Purkinje cells and is required for dendritic arborization and signaling. A spinocerebellar ataxia type 5 L253P mutation in the cytoskeletal protein ß-III-spectrin causes high-affinity actin binding. Previously we reported a cell-based fluorescence assay for identification of small-molecule actin-binding modulators of the L253P mutant ß-III-spectrin. Here we describe a complementary, in vitro, fluorescence resonance energy transfer (FRET) assay that uses purified L253P ß-III-spectrin actin-binding domain (ABD) and F-actin. To validate the assay for high-throughput compatibility, we first confirmed that our 50% FRET signal was responsive to swinholide A, an actin-severing compound, and that this yielded excellent assay quality with a Z' value > 0.77. Second, we screened a 2684-compound library of US Food and Drug Administration-approved drugs. Importantly, the screening identified numerous compounds that decreased FRET between fluorescently labeled L253P ABD and F-actin. The activity and target of multiple Hit compounds were confirmed in orthologous cosedimentation actin-binding assays. Through future medicinal chemistry, the Hit compounds can potentially be developed into a spinocerebellar ataxia type 5-specific therapeutic. Furthermore, our validated FRET-based in vitro high-throughput screening platform is poised for screening large compound libraries for ß-III-spectrin ABD modulators.


Asunto(s)
Actinas , Espectrina , Ataxias Espinocerebelosas , Humanos , Actinas/genética , Actinas/metabolismo , Descubrimiento de Drogas , Neuronas/metabolismo , Espectrina/metabolismo , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
6.
Sci Rep ; 12(1): 1726, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110634

RESUMEN

Recent structural studies of ß-III-spectrin and related cytoskeletal proteins revealed N-terminal sequences that directly bind actin. These sequences are variable in structure, and immediately precede a conserved actin-binding domain composed of tandem calponin homology domains (CH1 and CH2). Here we investigated in Drosophila the significance of the ß-spectrin N-terminus, and explored its functional interaction with a CH2-localized L253P mutation that underlies the neurodegenerative disease spinocerebellar ataxia type 5 (SCA5). We report that pan-neuronal expression of an N-terminally truncated ß-spectrin fails to rescue lethality resulting from a ß-spectrin loss-of-function allele, indicating that the N-terminus is essential to ß-spectrin function in vivo. Significantly, N-terminal truncation rescues neurotoxicity and defects in dendritic arborization caused by L253P. In vitro studies show that N-terminal truncation eliminates L253P-induced high-affinity actin binding, providing a mechanistic basis for rescue. These data suggest that N-terminal sequences may be useful therapeutic targets for small molecule modulation of the aberrant actin binding associated with SCA5 ß-spectrin and spectrin-related disease proteins.


Asunto(s)
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Espectrina/metabolismo , Ataxias Espinocerebelosas/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Masculino , Mutación , Plasticidad Neuronal , Neuronas/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Espectrina/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
7.
J Biol Chem ; 296: 100215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839680

RESUMEN

Numerous diseases are linked to mutations in the actin-binding domains (ABDs) of conserved cytoskeletal proteins, including ß-III-spectrin, α-actinin, filamin, and dystrophin. A ß-III-spectrin ABD mutation (L253P) linked to spinocerebellar ataxia type 5 (SCA5) causes a dramatic increase in actin binding. Reducing actin binding of L253P is thus a potential therapeutic approach for SCA5 pathogenesis. Here, we validate a high-throughput screening (HTS) assay to discover potential disrupters of the interaction between the mutant ß-III-spectrin ABD and actin in live cells. This assay monitors FRET between fluorescent proteins fused to the mutant ABD and the actin-binding peptide Lifeact, in HEK293-6E cells. Using a specific and high-affinity actin-binding tool compound, swinholide A, we demonstrate HTS compatibility with an excellent Z'-factor of 0.67 ± 0.03. Screening a library of 1280 pharmacologically active compounds in 1536-well plates to determine assay robustness, we demonstrate high reproducibility across plates and across days. We identified nine Hits that reduced FRET between Lifeact and ABD. Four of those Hits were found to reduce Lifeact cosedimentation with actin, thus establishing the potential of our assay for detection of actin-binding modulators. Concurrent to our primary FRET assay, we also developed a high-throughput compatible counter screen to remove undesirable FRET Hits. Using the FRET Hits, we show that our counter screen is sensitive to undesirable compounds that cause cell toxicity or ABD aggregation. Overall, our FRET-based HTS platform sets the stage to screen large compound libraries for modulators of ß-III-spectrin, or disease-linked spectrin-related proteins, for therapeutic development.


Asunto(s)
Actinas/metabolismo , Sitios de Unión/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Proteínas Recombinantes de Fusión/metabolismo , Espectrina/metabolismo , Actinas/química , Actinas/genética , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Toxinas Marinas/farmacología , Modelos Biológicos , Modelos Moleculares , Mutación , Fármacos Neuroprotectores/farmacología , Unión Proteica/efectos de los fármacos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Reproducibilidad de los Resultados , Espectrina/química , Espectrina/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Proteína Fluorescente Roja
8.
Nat Commun ; 8(1): 1350, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116080

RESUMEN

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the cytoskeletal protein ß-III-spectrin. Previously, a SCA5 mutation resulting in a leucine-to-proline substitution (L253P) in the actin-binding domain (ABD) was shown to cause a 1000-fold increase in actin-binding affinity. However, the structural basis for this increase is unknown. Here, we report a 6.9 Å cryo-EM structure of F-actin complexed with the L253P ABD. This structure, along with co-sedimentation and pulsed-EPR measurements, demonstrates that high-affinity binding caused by the CH2-localized mutation is due to opening of the two CH domains. This enables CH1 to bind actin aided by an unstructured N-terminal region that becomes α-helical upon binding. This helix is required for association with actin as truncation eliminates binding. Collectively, these results shed light on the mechanism by which ß-III-spectrin, and likely similar actin-binding proteins, interact with actin, and how this mechanism can be perturbed to cause disease.


Asunto(s)
Actinas/metabolismo , Mutación Missense , Espectrina/química , Espectrina/genética , Sitios de Unión , Microscopía por Crioelectrón , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Espectrina/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(44): E9376-E9385, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078305

RESUMEN

A spinocerebellar ataxia type 5 (SCA5) L253P mutation in the actin-binding domain (ABD) of ß-III-spectrin causes high-affinity actin binding and decreased thermal stability in vitro. Here we show in mammalian cells, at physiological temperature, that the mutant ABD retains high-affinity actin binding. Significantly, we provide evidence that the mutation alters the mobility and recruitment of ß-III-spectrin in mammalian cells, pointing to a potential disease mechanism. To explore this mechanism, we developed a Drosophila SCA5 model in which an equivalent mutant Drosophila ß-spectrin is expressed in neurons that extend complex dendritic arbors, such as Purkinje cells, targeted in SCA5 pathogenesis. The mutation causes a proximal shift in arborization coincident with decreased ß-spectrin localization in distal dendrites. We show that SCA5 ß-spectrin dominantly mislocalizes α-spectrin and ankyrin-2, components of the endogenous spectrin cytoskeleton. Our data suggest that high-affinity actin binding by SCA5 ß-spectrin interferes with spectrin-actin cytoskeleton dynamics, leading to a loss of a cytoskeletal mechanism in distal dendrites required for dendrite stabilization and arbor outgrowth.


Asunto(s)
Citoesqueleto/genética , Dendritas/genética , Mutación/genética , Plasticidad Neuronal/genética , Espectrina/genética , Ataxias Espinocerebelosas/genética , Animales , Ancirinas/genética , Células Cultivadas , Drosophila/genética , Drosophila/fisiología , Células HEK293 , Humanos , Neuronas/fisiología , Unión Proteica/genética , Células de Purkinje/fisiología
10.
Sci Rep ; 6: 21375, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26883385

RESUMEN

Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein ß-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of ß-III-spectrin. We report that the L253P substitution in the isolated ß-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 µM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P ß-III-spectrin is a likely driver of neurodegeneration.


Asunto(s)
Mutación , Espectrina/genética , Espectrina/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Estabilidad Proteica , Espectrina/química , Termodinámica
11.
Methods Cell Biol ; 131: 277-309, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26794520

RESUMEN

Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila.


Asunto(s)
Transporte Axonal/genética , Axones/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Transporte Axonal/fisiología , Dendritas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complejo Dinactina , Dineínas/genética , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética
12.
Mol Biol Cell ; 19(12): 5181-92, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18829867

RESUMEN

How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH-Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin-myosin network to regulate neuronal process outgrowth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuronas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Axones/ultraestructura , Células Cultivadas , Corteza Cerebral/citología , Proteínas del Citoesqueleto/genética , Prueba de Complementación Genética , Humanos , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuronas/citología , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Técnicas del Sistema de Dos Híbridos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
13.
Cell Signal ; 19(1): 177-84, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16887332

RESUMEN

UNC-51-like kinases (ULK) are members of an evolutionarily conserved sub-family of ubiquitously expressed serine/threonine-specific protein kinases. Here we report that fibroblast growth factor receptor substrate (FRS) 2/3 are novel ULK2 carboxy-terminal domain interacting proteins. FRS2/3 are homologs that function as adaptor proteins to mediate signaling of multiple receptor tyrosine kinases. ULK2 interacts with the phospho-tyrosine binding (PTB) domain of FRS2/3. We demonstrate that siRNA targeting ULK2 in mouse P19 cells results in elevated FGFR1 mediated FRS3 and SHP2 tyrosyl phosphorylation. In addition, RNAi-mediated decrease in ULK2 causes increased interaction between FGFR1 and FRS3. ULK2 phosphorylates FRS2/3 in vitro, suggesting that ULK2 mediated phosphorylation may be a mechanism of FRS2/3 regulation. The data presented support a model in which ULK2, by interaction with FRS2/3 and inhibition of SynGAP, functions to negatively regulate tyrosyl phosphorylation of signaling proteins downstream of FGFR1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Secuencia de Aminoácidos , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Tirosina/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA