Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 6(12): 1914-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22105033

RESUMEN

"Bulb" is a mobile and complex structure appearing in vacuolar membrane of plant cell. We recently reported new fluorescent marker lines for bulbs and bulb-less mutants. We tried multicolor visualization of vacuolar membrane to show distinct segregation of bulb-positive protein (γTIP or AtVAM3) and bulb-negative protein (AtRab75). Unexpectedly, GFP-AtRab75 resulted to localize in bulb under the condition of co-expression with TagRFP-AtVAM3. The signal intensities of GFP-AtRab75 and TagRFP-AtVAM3 were quantified and compared. The result indicates that TagRFP-AtVAM3 is concentrated in bulb than GFP-AtRab75.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Membrana Celular/ultraestructura , Proteínas Qa-SNARE/metabolismo , Vacuolas/ultraestructura , Proteínas de Unión al GTP rab/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Qa-SNARE/genética , Proteínas de Unión al GTP rab/genética
2.
Plant J ; 68(1): 64-73, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21645145

RESUMEN

The plant vacuole fulfills a variety of functions, and is essential for plant growth and development. We previously identified complex and mobile structures on the continuous vacuolar membrane, which we refer to as 'bulbs'. To ascertain their biological significance and function, we searched for markers associated with bulbs, and mutants that show abnormalities with respect to bulbs. We observed bulb-like structures after expression of non-membranous proteins as well as the functional soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) molecules VAM3 and VTI11. Bulbs are formed in more tissues than previously reported, including flowering organs, suspension culture cells, endodermal cells in the flowering stem, and at very early stages of seed germination. Using existing and newly developed marker lines, we found that the frequency of bulb occurrence is significantly decreased in multiple shoot gravitropism (sgr) mutants, which are known to have a defect in vacuolar membrane properties in endodermal cells. Based on results with new marker lines, which enabled us to observe the process of bulb biogenesis, and analysis of the phenotypes of these mutants, we propose multiple mechanisms for bulb formation, one of which may be that used for formation of transvacuolar strands.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Membrana Celular/ultraestructura , Gravitropismo/fisiología , Vacuolas/ultraestructura , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Copas de Floración/ultraestructura , Germinación , Proteínas Fluorescentes Verdes , Mutación , Fenotipo , Fosfolipasas/genética , Fosfolipasas/metabolismo , Epidermis de la Planta/ultraestructura , Hojas de la Planta/ultraestructura , Raíces de Plantas/ultraestructura , Brotes de la Planta/ultraestructura , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Semillas/fisiología , Vacuolas/enzimología , Vacuolas/metabolismo
3.
Curr Biol ; 21(6): 497-502, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21396821

RESUMEN

Flowering plants have evolved a unique reproductive process called double fertilization, whereby two dimorphic female gametes are fertilized by two immotile sperm cells conveyed by the pollen tube. The two sperm cells are arranged in tandem with a leading pollen tube nucleus to form the male germ unit and are placed under the same genetic controls. Genes controlling double fertilization have been identified, but whether each sperm cell is able to fertilize either female gamete is still unclear. The dynamics of individual sperm cells after their release in the female tissue remain largely unknown. In this study, we photolabeled individual isomorphic sperm cells before their release and analyzed their fate during double fertilization in Arabidopsis thaliana. We found that sperm delivery was composed of three steps. Sperm cells were projected together to the boundary between the two female gametes. After a long period of immobility, each sperm cell fused with either female gamete in no particular order, and no preference was observed for either female gamete. Our results suggest that the two sperm cells at the front and back of the male germ unit are functionally equivalent and suggest unexpected cell-cell communications required for sperm cells to coordinate double fertilization of the two female gametes.


Asunto(s)
Arabidopsis/fisiología , Fertilización/fisiología , Células Germinativas de las Plantas/fisiología , Coloración y Etiquetado , Imagen de Lapso de Tiempo
4.
Plant Cell Physiol ; 50(6): 1041-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19369273

RESUMEN

Actin plays fundamental roles in a wide array of plant functions, including cell division, cytoplasmic streaming, cell morphogenesis and organelle motility. Imaging the actin cytoskeleton in living cells is a powerful methodology for studying these important phenomena. Several useful probes for live imaging of filamentous actin (F-actin) have been developed, but new versatile probes are still needed. Here, we report the application of a new probe called Lifeact for visualizing F-actin in plant cells. Lifeact is a short peptide comprising 17 amino acids that was derived from yeast Abp140p. We used a Lifeact-Venus fusion protein for staining F-actin in Arabidopsis thaliana and were able to observe dynamic rearrangements of the actin meshwork in root hair cells. We also used Lifeact-Venus to visualize the actin cytoskeleton in the liverwort Marchantia polymorpha; this revealed unique and dynamic F-actin motility in liverwort cells. Our results suggest that Lifeact could be a useful tool for studying the actin cytoskeleton in a wide range of plant lineages.


Asunto(s)
Actinas/metabolismo , Arabidopsis/citología , Marchantia/citología , Sondas Moleculares/metabolismo , Arabidopsis/genética , Proteínas Bacterianas/metabolismo , Proteínas Luminiscentes/metabolismo , Marchantia/genética , Microscopía Fluorescente , Péptidos/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Coloración y Etiquetado/métodos
5.
Plant Physiol ; 141(3): 1120-7, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16714404

RESUMEN

Cyanobacteria have a thylakoid lipid composition very similar to that of plant chloroplasts, yet cyanobacteria are proposed to synthesize monogalactosyldiacylglycerol (MGDG), a major membrane polar lipid in photosynthetic membranes, by a different pathway. In addition, plant MGDG synthase has been cloned, but no ortholog has been reported in cyanobacterial genomes. We report here identification of the gene for monoglucosyldiacylglycerol (MGlcDG) synthase, which catalyzes the first step of galactolipid synthesis in cyanobacteria. Using comparative genomic analysis, candidates for the gene were selected based on the criteria that the enzyme activity is conserved between two species of cyanobacteria (unicellular [Synechocystis sp. PCC 6803] and filamentous [Anabaena sp. PCC 7120]), and we assumed three characteristics of the enzyme; namely, it harbors a glycosyltransferase motif, falls into a category of genes with unknown function, and shares significant similarity in amino acid sequence between these two cyanobacteria. By a motif search of all genes of Synechocystis, BLAST searches, and similarity searches between these two cyanobacteria, we identified four candidates for the enzyme that have all the characteristics we predicted. When expressed in Escherichia coli, one of the Synechocystis candidate proteins showed MGlcDG synthase activity in a UDP-glucose-dependent manner. The ortholog in Anabaena also showed the same activity. The enzyme was predicted to require a divalent cation for its activity, and this was confirmed by biochemical analysis. The MGlcDG synthase and the plant MGDG synthase shared low similarity, supporting the presumption that cyanobacteria and plants utilize different pathways to synthesize MGDG.


Asunto(s)
Anabaena/genética , Galactolípidos/biosíntesis , Glucosiltransferasas/genética , Lípidos de la Membrana/biosíntesis , Synechocystis/genética , Secuencia de Aminoácidos , Anabaena/enzimología , Genoma Bacteriano , Glucosiltransferasas/metabolismo , Magnesio/fisiología , Datos de Secuencia Molecular , Fotosíntesis/fisiología , Homología de Secuencia de Aminoácido , Synechocystis/enzimología , Uridina Difosfato Glucosa
6.
Development ; 132(24): 5387-98, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16291794

RESUMEN

CAPRICE (CPC), a small, R3-type Myb-like protein, is a positive regulator of root hair development in Arabidopsis. Cell-to-cell movement of CPC is important for the differentiation of epidermal cells into trichoblasts (root hair cells). CPC is transported from atrichoblasts (hairless cells), where it is expressed, to trichoblasts, and generally accumulates in their nuclei. Using truncated versions of CPC fused to GFP, we identified a signal domain that is necessary and sufficient for CPC cell-to-cell movement. This domain includes the N-terminal region and a part of the Myb domain. Amino acid substitution experiments indicated that W76 and M78 in the Myb domain are critical for targeted transport, and that W76 is crucial for the nuclear accumulation of CPC:GFP. To evaluate the tissue-specificity of CPC movement, CPC:GFP was expressed in the stele using the SHR promoter and in trichoblasts using the EGL3 promoter. CPC:GFP was able to move from trichoblasts to atrichoblasts but could not exit from the stele, suggesting the involvement of tissue-specific regulatory factors in the intercellular movement of CPC. Analyses with a secretion inhibitor, Brefeldin A, and with an rhd3 mutant defective in the secretion process in root epidermis suggested that intercellular CPC movement is mediated through plasmodesmata. Furthermore, the fusion of CPC to tandem-GFPs defined the capability of CPC to increase the size exclusion limit of plasmodesmata.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Epidermis de la Planta/fisiología , Raíces de Plantas/fisiología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Sustitución de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brefeldino A/farmacología , Diferenciación Celular , Núcleo Celular/fisiología , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Mutación , Epidermis de la Planta/citología , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
Plant Physiol ; 139(1): 231-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16113209

RESUMEN

Peroxisomes perform diverse and vital functions in eukaryotes, and abnormalities in peroxisomal function lead to severe developmental disorders in humans. Peroxisomes are also involved in a wide array of physiological and metabolic functions unique to plants, yet many aspects of this important organelle are poorly understood. In yeast and mammals, various steps in peroxisome biogenesis require the function of peroxin (PEX) proteins, among which PEX12 is a RING finger peroxisomal membrane protein involved in the import of matrix proteins. To investigate the role of PEX12 in plants, we identified a T-DNA knockout allele of PEX12 and generated partial loss-of-function pex12 mutants using RNA interference. We show that pex12 null mutants are developmentally arrested during early embryogenesis, and that the embryo-lethal phenotype can be rescued by overexpression of the PEX12-cyan fluorescent protein fusion protein, which targets to the peroxisome. Using virus-induced gene-silencing techniques, we demonstrate that peroxisomal number and fluorescence of the yellow fluorescent protein-peroxisome targeting signal type 1 protein are greatly reduced when PEX12 is silenced. RNA interference plants with partial reduction of the PEX12 transcript exhibit impaired peroxisome biogenesis and function, inhibition of plant growth, and reduced fertility. Our work provides evidence that the Arabidopsis (Arabidopsis thaliana) PEX12 protein is required for peroxisome biogenesis and plays an essential role throughout plant development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de la Membrana/fisiología , Peroxisomas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Peroxinas , Fenotipo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
Plant J ; 36(1): 55-66, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12974811

RESUMEN

We have identified a new Arabidopsis mutant, yore-yore (yre), which has small trichomes and glossy stems. Adhesion between epidermal cells was observed in the organs of the yre shoot. The cloned YRE had high homology to plant genes involved in epicuticular wax synthesis, such as ECERIFERUM1 (CER1) and maize GLOSSY1. The phenotype of transgenic plants harboring double-stranded RNA interference (dsRNAi) YRE was quite similar to that of the yre mutant. The amount of epicuticular wax extracted from leaves and stems of yre-1 was approximately one-sixth of that from the wild type. YRE promoter::GUS and in situ hybridization revealed that YRE was specifically expressed in cells of the L1 layer of the shoot apical meristem and young leaves, stems, siliques, and lateral root primordia. Strong expression was detected in developing trichomes. The trichome structure of cer1 was normal, whereas that of the yre cer1 double mutant was heavily deformed, indicating that epicuticular wax is required for normal growth of trichomes. Double mutants of yre and trichome-morphology mutants, glabra2 (gl2) and transparent testa glabra1 (ttg1), showed that the phenotype of the trichome structure was additive, suggesting that the wax-requiring pathway is distinct from the trichome development pathway controlled by GL2 and TTG1.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Diferenciación Celular/genética , Epidermis de la Planta/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/fisiología , Extensiones de la Superficie Celular/genética , Extensiones de la Superficie Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Fenotipo , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Homología de Secuencia de Aminoácido , Ceras/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA