Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6708): 533-538, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088622

RESUMEN

To achieve the full potential of monolithic perovskite/silicon tandem solar cells, crystal defects and film inhomogeneities in the perovskite top cell must be minimized. We discuss the use of methylenediammonium dichloride as an additive to the perovskite precursor solution, resulting in the incorporation of in situ-formed tetrahydrotriazinium (THTZ-H+) into the perovskite lattice upon film crystallization. The cyclic nature of the THTZ-H+ cation enables a strong interaction with the lead octahedra of the perovskite lattice through the formation of hydrogen bonds with iodide in multiple directions. This structure improves the device power conversion efficiency (PCE) and phase stability of 1.68 electron volts perovskites under prolonged light and heat exposure under 1-sun illumination at 85°C. Monolithic perovskite/silicon tandems incorporating THTZ-H+ in the perovskite photo absorber reached a 33.7% independently certified PCE for a device area of 1 square centimeter.

2.
Medeni Med J ; 39(1): 16-23, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511727

RESUMEN

Objective: This retrospective observational study aimed to investigate the effect of different doses of sugammadex used in reversing neuromuscular blockade in electroconvulsive therapy (ECT) procedures on patient recovery and hemodynamic measurements. Methods: Anesthesia induction was performed using propofol (1 mg/kg) and rocuronium (0.4 mg/kg). Patients were classified into group 2 (2 mg/kg) and group 3 (3 mg/kg) according to the dose of sugammadex used to reverse neuromuscular blockade. The patient's spontaneous breathing time, eye-opening time, time to comply with voluntary commands, time to reach Modified Aldrete score (MAS) 9, complications, and hemodynamic data were analyzed. Results: In total, 314 ECT sessions were performed on 46 patients. The average age of the patients was 38.3±12.6 years, and 56.6% (n=26) were male. While the average number of ECTs applied to the patients was 6.8±2.8, the average seizure duration was 28.2±12.7 seconds. The most common diagnosis (32.7%) in patients who underwent ECT was bipolar disorder. The average time to recovery of spontaneous breathing, eyeopening time, time to comply with voluntary commands, and time to reach MAS 9 were found to be significantly lower in group 3 (p<0.001, p<0.001, p<0.001, and p=0.002, respectively). Tooth damage was observed in 0.3% (n=1) and tongue abrasion in 0.6% (n=2) of the cases. Hemodynamic measurements were similar between groups (p>0.05). Conclusions: Sugammadex used at a dose of 3 mg/kg in ECT procedures significantly reduces recovery times compared with 2 mg/kg. However, both doses can be safely and cost-effectively used to reverse the neuromuscular blockade provided by 0.4 mg/kg rocuronium.

3.
Nature ; 628(8006): 93-98, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382650

RESUMEN

Defects at the top and bottom interfaces of three-dimensional (3D) perovskite photoabsorbers diminish the performance and operational stability of perovskite solar cells owing to charge recombination, ion migration and electric-field inhomogeneities1-5. Here we demonstrate that long alkyl amine ligands can generate near-phase-pure 2D perovskites at the top and bottom 3D perovskite interfaces and effectively resolve these issues. At the rear-contact side, we find that the alkyl amine ligand strengthens the interactions with the substrate through acid-base reactions with the phosphonic acid group from the organic hole-transporting self-assembled monolayer molecule, thus regulating the 2D perovskite formation. With this, inverted perovskite solar cells with double-side 2D/3D heterojunctions achieved a power conversion efficiency of 25.6% (certified 25.0%), retaining 95% of their initial power conversion efficiency after 1,000 h of 1-sun illumination at 85 °C in air.

4.
Science ; 383(6679): eadh3849, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38207044

RESUMEN

Perovskite/silicon tandem solar cells offer a promising route to increase the power conversion efficiency of crystalline silicon (c-Si) solar cells beyond the theoretical single-junction limitations at an affordable cost. In the past decade, progress has been made toward the fabrication of highly efficient laboratory-scale tandems through a range of vacuum- and solution-based perovskite processing technologies onto various types of c-Si bottom cells. However, to become a commercial reality, the transition from laboratory to industrial fabrication will require appropriate, scalable input materials and manufacturing processes. In addition, perovskite/silicon tandem research needs to increasingly focus on stability, reliability, throughput of cell production and characterization, cell-to-module integration, and accurate field-performance prediction and evaluation. This Review discusses these aspects in view of contemporary solar cell manufacturing, offers insights into the possible pathways toward commercial perovskite/silicon tandem photovoltaics, and highlights research opportunities to realize this goal.

5.
Nat Commun ; 15(1): 708, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267408

RESUMEN

Thermally evaporated C60 is a near-ubiquitous electron transport layer in state-of-the-art p-i-n perovskite-based solar cells. As perovskite photovoltaic technologies are moving toward industrialization, batch-to-batch reproducibility of device performances becomes crucial. Here, we show that commercial as-received (99.75% pure) C60 source materials may coalesce during repeated thermal evaporation processes, jeopardizing such reproducibility. We find that the coalescence is due to oxygen present in the initial source powder and leads to the formation of deep states within the perovskite bandgap, resulting in a systematic decrease in solar cell performance. However, further purification (through sublimation) of the C60 to 99.95% before evaporation is found to hinder coalescence, with the associated solar cell performances being fully reproducible after repeated processing. We verify the universality of this behavior on perovskite/silicon tandem solar cells by demonstrating their open-circuit voltages and fill factors to remain at 1950 mV and 81% respectively, over eight repeated processes using the same sublimed C60 source material. Notably, one of these cells achieved a certified power conversion efficiency of 30.9%. These findings provide insights crucial for the advancement of perovskite photovoltaic technologies towards scaled production with high process yield.

6.
Nanoscale ; 15(42): 16984-16991, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37830448

RESUMEN

Perovskite/silicon tandem solar cells have a tremendous potential to boost renewable electricity production thanks to their very high performance combined with promising cost structure. However, for actual field deployment, any solar cell technology needs to be assembled into modules, where the associated processes involve several challenges that may affect both the performance and stability of the devices. For instance, due to its hygroscopic nature, ethylene vinyl acetate (EVA) is incompatible with perovskite-based photovoltaics. To circumvent this issue, we investigate here two alternative encapsulant polymers for the packaging of perovskite/silicon tandems into minimodules: a thermoplastic polyurethane (TPU) and a thermoplastic polyolefin (TPO) elastomer. To gauge their impact on tandem-module performance and stability, we performed two internationally established accelerated module stability tests (IEC 61215): damp heat exposure and thermal cycling. Finally, to better understand the thermomechanical properties of the two encapsulants and gain insight into their relation to the thermal cycling of encapsulated tandems, we performed a dynamic mechanical thermal analysis. Our understanding of the packaging process of the tandem module provides useful insights for the development of commercially viable perovskite photovoltaics.

7.
Nature ; 623(7988): 732-738, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769785

RESUMEN

Monolithic perovskite/silicon tandem solar cells are of great appeal as they promise high power conversion efficiencies (PCEs) at affordable cost. In state-of-the-art tandems, the perovskite top cell is electrically coupled to a silicon heterojunction bottom cell by means of a self-assembled monolayer (SAM), anchored on a transparent conductive oxide (TCO), which enables efficient charge transfer between the subcells1-3. Yet reproducible, high-performance tandem solar cells require energetically homogeneous SAM coverage, which remains challenging, especially on textured silicon bottom cells. Here, we resolve this issue by using ultrathin (5-nm) amorphous indium zinc oxide (IZO) as the interconnecting TCO, exploiting its high surface-potential homogeneity resulting from the absence of crystal grains and higher density of SAM anchoring sites when compared with commonly used crystalline TCOs. Combined with optical enhancements through equally thin IZO rear electrodes and improved front contact stacks, an independently certified PCE of 32.5% was obtained, which ranks among the highest for perovskite/silicon tandems. Our ultrathin transparent contact approach reduces indium consumption by approximately 80%, which is of importance to sustainable photovoltaics manufacturing4.

8.
Science ; 381(6653): 30-31, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410846

RESUMEN

Perovskite-silicon tandem solar cells break the 30% efficiency threshold.

9.
Nature ; 618(7963): 74-79, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36977463

RESUMEN

The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics1,2. However, light-induced phase segregation limits their efficiency and stability3-5: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber2,6. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.

10.
Science ; 377(6603): 302-306, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35737811

RESUMEN

The performance of perovskite solar cells with inverted polarity (p-i-n) is still limited by recombination at their electron extraction interface, which also lowers the power conversion efficiency (PCE) of p-i-n perovskite-silicon tandem solar cells. A MgFx interlayer with thickness of ~1 nanometer at the perovskite/C60 interface favorably adjusts the surface energy of the perovskite layer through thermal evaporation, which facilitates efficient electron extraction and displaces C60 from the perovskite surface to mitigate nonradiative recombination. These effects enable a champion open-circuit voltage of 1.92 volts, an improved fill factor of 80.7%, and an independently certified stabilized PCE of 29.3% for a monolithic perovskite-silicon tandem solar cell ~1 square centimeter in area. The tandem retained ~95% of its initial performance after damp-heat testing (85°C at 85% relative humidity) for >1000 hours.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA