Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 342: 123013, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38012966

RESUMEN

Chromium (Cr) is a highly toxic heavy metal that is extensively released into the soil and drastically reduces plant yield. Silicon nanoparticles (Si NPs) were chosen to mitigate Cr toxicity due to their ability to interact with heavy metals and reduce their uptake. This manuscript explores the mechanisms of Cr-induced toxicity and the potential of Si NPs to mitigate Cr toxicity by regulating photosynthesis, oxidative stress, and antioxidant defence, along with the role of transcription factors and heavy metal transporter genes in rapeseed (Brassica napus L.). Rapeseed plants were grown hydroponically and subjected to hexavalent Cr stress (50 and 100 µM) in the form of K2Cr2O7 solution. Si NPs were foliar sprayed at concentrations of 50, 100 and 150 µM. The findings showed that 100 µM Si NPs under 100 µM Cr stress significantly increased the leaf Si content by 169% while reducing Cr uptake by 92% and 76% in roots and leaves, respectively. The presence of Si NPs inside the plant leaf cells was confirmed by using energy-dispersive spectroscopy, inductively coupled plasma‒mass spectrometry, and confocal laser scanning microscopy. The study's findings showed that Cr had adverse effects on plant growth, photosynthetic gas exchange attributes, leaf mesophyll ultrastructure, PSII performance and the activity of enzymatic and nonenzymatic antioxidants. However, Si NPs minimized Cr-induced toxicity by reducing total Cr accumulation and decreasing oxidative damage, as evidenced by reduced ROS production (such as H2O2 and MDA) and increased enzymatic and nonenzymatic antioxidant activities in plants. Interestingly, Si NPs under Cr stress effectively increased the NPQ, ETR and QY of PSII, indicating a robust protective response of PSII against stress. Furthermore, the enhancement of Cr tolerance facilitated by Si NPs was linked to the upregulation of genes associated with antioxidant enzymes and transcription factors, alongside the concurrent reduction in metal transporter activity.


Asunto(s)
Brassica napus , Nanopartículas , Contaminantes del Suelo , Antioxidantes/metabolismo , Dióxido de Silicio , Peróxido de Hidrógeno/farmacología , Fotosíntesis , Estrés Oxidativo , Cromo/toxicidad , Cromo/análisis , Nanopartículas/toxicidad , Factores de Transcripción , Contaminantes del Suelo/análisis
2.
Front Syst Neurosci ; 17: 1176668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229350

RESUMEN

Fear learning is mediated by a large network of brain structures and the understanding of their roles and interactions is constantly progressing. There is a multitude of anatomical and behavioral evidence on the interconnection of the cerebellar nuclei to other structures in the fear network. Regarding the cerebellar nuclei, we focus on the coupling of the cerebellar fastigial nucleus to the fear network and the relation of the cerebellar dentate nucleus to the ventral tegmental area. Many of the fear network structures that receive direct projections from the cerebellar nuclei are playing a role in fear expression or in fear learning and fear extinction learning. We propose that the cerebellum, via its projections to the limbic system, acts as a modulator of fear learning and extinction learning, using prediction-error signaling and regulation of fear related thalamo-cortical oscillations.

3.
NanoImpact ; 28: 100423, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084849

RESUMEN

Foliar-application of nano-particles enhanced the foliar nutrient status and crop growth and yield. It is hypothesized that being second messenger molecule, supplementation of Ca2+ via calcium nanoparticles (Ca-NPs) can trigger various signaling pathways of physiological processes which can lead to alleviate the adverse effects of drought stress on the growth of canola (Brassica napus L.). Nano-enabled foliar-application could be an ideal strategy for advancing agricultural productivity. The present study explored the role of calcium nanoparticles (Ca-NPs) in alleviating drought stress in hydroponic Brassica napus (B. napus) plants. The foliar applied Ca-NPs were spherically shaped with an average size of 86 nm. Foliar application of 100 mg L-1 Ca-NPs enhanced biomass of canola plants and considered as optimal dose. Ca-NPs at 100 mg L-1 has a greater favorable impact on mesophyll ultrastructure, PSI and PSII efficacy, gas exchange parameters, chlorophyll content, and mineral absorption. The Ca-NPs treatment increased NPQ and Y(NPQ) under drought condition, indicating a higher PSII protective response to stressed conditions with better heat dissipation as a photoprotective component of NPQ. Ca-NPs application also reduced oxidative stress damage as measured by a reduction in reactive oxygen species (ROS) generation in terms of hydrogen peroxide and malondialdehyde (H2O2 and MDA). Furthermore, Ca-NPs induced drought tolerance response corresponded to an increased in key antioxidative defense enzymes (SOD, POD, CAT, APX), as well as non-enzymatic components (protease, lipoxygenase, proline, total soluble protein contents, endogenous hormonal biosynthesis), and secondary metabolite expression in B. napus plants. Taken together, the results of this study offer new insights into the physiological and molecular mechanisms by which B. napus responds to Ca-NPs exposure.


Asunto(s)
Brassica napus , Complejo de Proteína del Fotosistema II , Calcio , Antioxidantes/farmacología , Peróxido de Hidrógeno
4.
Front Plant Sci ; 13: 936696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968110

RESUMEN

Purple-stem Brassica napus (B. napus) is a phenotype with unique color because of its high anthocyanins content. Anthocyanins are naturally occurring plant pigments that have antioxidants activity and play important role in plant defense against abiotic and biotic stresses. In the present study, drought induced effects on plants were investigated in hydroponically grown seedlings of green stem (GS) and purple stem (PS) genotypes of B. napus. The results of this study showed that the major function of anthocyanins accumulation during drought was to enhance the antioxidant capability and stress tolerance in B. napus plants. Our results showed that drought significantly inhibited the plant growth in terms of decreased biomass accumulation in both genotypes, although marked decline was observed in GS genotype. The reduction in photosynthetic attributes was more noticeable in the GS genotype, whereas the PS genotype showed better performance under drought stress. Under stressful conditions, both the genotype showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher levels of antioxidant enzymes activities. Under drought conditions, the GS genotype showed apparent damages on chloroplast deformation like in thylakoid membrane and grana structural distortion and fewer starch grains and bigger plastoglobuli. Moreover, during drought stress, the PS genotype exhibited maximum expression levels of anthocyanins biosynthesis genes and antioxidant enzymes accompanied by higher stress tolerance relative to GS genotype. Based on these findings, it can be concluded that GS genotype found more sensitive to drought stress than the PS genotype. Furthermore this research paper also provides practical guidance for plant biologists who are developing stress-tolerant crops by using anthocyanin biosynthesis or regulatory genes.

5.
Environ Pollut ; 292(Pt B): 118473, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758366

RESUMEN

Melatonin (MT) and selenium (Se) application known to decrease heavy metal uptake and toxicity in plants. By mixing the Se in MT medium a new complex MT-Se nanoparticles (MT-Se NPs) was synthesized and we investigated the role of MT-Se NPs on B. napus growth and tolerance against As stress. The MT-Se particles significantly enhanced the plant growth and other associated physiological attributes under As stress. The As treatment at 80 µM was more phytotoxic, however MT-Se NPs application resulted in a substantial increase in leaf chlorophyll fluorescence, biomass accumulation, and decreased ROS relative to As stressed plants. The use of MT-Se NPs to As stressed plants reduced photosynthetic inhibition and oxidative stress and attenuated the increase in MDA and H2O2 contents. The application of MT-Se NPs also boosted the antioxidant enzymes activities such as SOD, POD and CAT as well as the APX, GR and GSH activates under As stress. The results also showed MT-Se NPs treatments alleviated the growth inhibition induced by As and reduced the accumulation of As in leaves and roots of B. napus seedlings. Moreover, treatment with MT-Se NPs improved the plant growth more successfully than treatment of MT and Se alone. This study explored the mechanism of melatonin and selenium efficiency in the composition can be jointly encouraged to exert synergistic effects and boost plant enzymatic activities.


Asunto(s)
Arsénico , Brassica napus , Melatonina , Nanopartículas , Selenio , Arsénico/toxicidad , Peróxido de Hidrógeno
6.
BMC Plant Biol ; 21(1): 502, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717538

RESUMEN

BACKGROUND: Proline can promote growth of plants by increasing photosynthetic activity under both non-stress and abiotic stress conditions. However, its role in non-stressed conditions is least studied. An experiment was conducted to assess as to whether increase in growth of wheat due to seed priming with proline under non-stress condition was associated with proline-induced changes in photosystem II (PSII) activity. Seeds of four wheat varieties (S-24, Sehar-06, Galaxy-13, and Pasban-90) were primed with different concentrations of proline (0, 5, 15 and 25 mM) for 12 h and allowed to grow under normal conditions. Biomass accumulation and photosynthetic performance, being two most sensitive features/indicators of plant growth, were selected to monitor proline modulated changes. RESULTS: Seed priming with proline increased the fresh and dry weights of shoots and roots, and plant height of all four wheat varieties. Maximum increase in growth attributes was observed in all four wheat varieties at 15 mM proline. Maximum growth improvement due to proline was found in var. Galaxy-13, whereas the reverse was true for S-24. Moreover, proline treatment changed the Fo, Fm, Fv/Fo, PIABS, PITot in wheat varieties indicating changes in PSII activity. Proline induced changes in energy fluxes for absorption, trapping, electron transport and heat dissipation per reaction center indicated that var. Galaxy-13 had better ability to process absorbed light energy through photosynthetic machinery. Moreover, lesser PSII efficiency in var. S-24 was due to lower energy flux for electron transport and greater energy flux for heat dissipation. This was further supported by the fact that var. S-24 had disturbance at acceptor side of PSI as reflected by reduction in ΔVIP, probability and energy flux for electron transport at the PSI end electron acceptors. CONCLUSION: Seed priming with proline improved the growth of wheat varieties, which depends on type of variety and concentration of proline applied. Seed priming with proline significantly changed the PSII activity in wheat varieties, however, its translation in growth improvement depends on potential of processing of absorbed light energy by electron acceptors of electron transport chain, particularly those present at PSI end.


Asunto(s)
Germinación/efectos de los fármacos , Fotosíntesis , Prolina/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/genética , Triticum/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Variación Genética , Genotipo , Pakistán , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo
7.
J Hazard Mater ; 416: 125921, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492853

RESUMEN

In-situ stabilization has been considered an effective way to remediate metal contaminated soil. Thus, pot experiments were undertaken to investigate the effectiveness of multiple stabilization agents such as biochar (BC), mussel shell (MS), zeolite (ZE) and limestone (LS) on the immobilization of Ni, physicochemical features and enzyme activities in polluted soil. Results showed that the sole application of Ni adversely affected the rapeseed growth, photosynthetic pigments, and antioxidative defense. However, the addition of amendments to the contaminated soil significantly reduced Ni bioavailability. The XRD analysis confirmed the formation of Ni related ligands and FTIR showed the presence of hydroxyl, carboxyl and sulfur functional groups, as well as complexation and adsorption of Ni on amendments. Among multiple amendments, biochar significantly enhanced plant biomass attributes and total chlorophyll content. Moreover, addition of amendments also strengthened the antioxidant defense by decreasing Ni induced oxidative stress (H2O2 and O2.-), increased macronutrient availability, reduced Ni uptake and improved soil health. The qPCR analysis showed that the Ni transporters were significantly suppressed by amendments, which is correlated with the lower accumulation of Ni in rapeseed. The present study showed that immobilizing agents, especially biochar, is an effective amendment to immobilize Ni in soil, which restricts its entry into the food chain.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Carbón Orgánico , Peróxido de Hidrógeno , Níquel/análisis , Estrés Oxidativo , Suelo , Contaminantes del Suelo/análisis
8.
Chemosphere ; 282: 130897, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34470145

RESUMEN

Mussel shell (MS) and biochar (BC) are commonly used for the remediation of metal contaminated soil. However, less research has been focused to examine the efficacy of their combinations to reduce metal toxicity in crop plants. This study was therefore conducted to investigate the effects of BC, MS and their activated concoctions on the soil properties, enzyme activities and nickel (Ni) immobilization in aged Ni contaminated soil. Moreover, the growth, photosynthetic pigments and anti-oxidative machnery of Brassica napus plants has also been investigated in order to determine amendments efficiency in reducing soil Ni toxicity for plants. The results showed that the application of Ni adversely affected soil health and trigged stress responses by inducing oxidative stress in B. napus. However, the incorporation of amendments reduced the bioavailability of Ni, and the concoctions of BC and MS showed promising results in the immobilization of Ni. Among various combinations of BC and MS, treatment with BC + MS (3:1) significantly reduced Ni uptake, decreased reactive oxygen species (ROS) and enhanced antioxidant defense of B. napus plants. Results showed that amendment's combinations stimulated the transcriptional levels of ROS scavenging enzymes and suppressed the expression level of Ni transporters. The morphological and physical characterization techniques (i.e. SEM, BET, EDS, FTIR and X-ray diffraction analyses) showed that amendment's combinations had relatively higher Ni adsorption capacity, indicating that BC and MS concoctions are efficient immobilizing agents for minimizing Ni availability, preventing oxidative toxicity and promoting growth and biomass production in rapeseed plants under metal stress conditions.


Asunto(s)
Bivalvos , Brassica napus , Contaminantes del Suelo , Animales , Carbón Orgánico , Níquel/análisis , Níquel/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
9.
Plant Physiol Biochem ; 167: 517-528, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34425396

RESUMEN

The contribution of one major or a combination of several physiological processes in salt tolerance was assessed in three local varieties (Blacklong, Advanta-1103, and Dilpasand) of ridge gourd [Luffa acutangula (L.) Roxb.] at varying salt levels (0, 75, and 150 mM NaCl). Based on growth attributes, var. Dilpasand as salt-tolerant and var. Blacklong as moderately salt-tolerant, while var. Advanta-1103 as salt-sensitive. Inter-varietal differences for photosynthetic pigments and relative water content (RWC) was not observed. The salt-sensitive variety Advanta 1103 had greater Na+ accumulation (73.72%) in the leaves than those in the moderately tolerant and tolerant varieties. Total soluble proteins were relatively lower (58.25%) in the salt-sensitive variety but maximal increase (69.34%) in total free amino acids was observed. However, accumulation of proline was maximal in the salt-tolerant variety (Dilpasand). Salt-tolerant variety exhibited minimal oxidative stress (relative low levels of H2O2) and membrane damage (low content of MDA and electrolytic leakage) and higher activities of antioxidant enzymes (catalase and peroxidase). Although all ridge gourd varieties down-regulated the electron transport through PSII by increasing the safe dissipation of heat Y(NPQ) to lower the ROS generation, this was maximal in the salt-tolerant variety Dilpasand. Relatively greater reduction in Y(ND) and enhancement in Y(NA) indicated PSI-photoinhibition in salt-sensitive variety. The greater salt tolerance in var. Dilpasand was due to the coordinated impact of ion exclusion, higher accumulation of proline, better capacity to manage electron transport from PSII to PSI with higher Y(NPQ) and antioxidant capacity.


Asunto(s)
Luffa , Tolerancia a la Sal , Antioxidantes , Peróxido de Hidrógeno , Fotosíntesis
10.
Plant Cell Rep ; 40(11): 2063-2080, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34417832

RESUMEN

KEY MESSAGE: Melatonin is an early player in chromium stress response in canola plants; it promotes ROS scavenging and chlorophyll stability, modulates PSII stability and regulates feedback inhibition of photosynthesis conferring chromium tolerance. The development of heavy metals, especially chromium (Cr)-tolerant cultivars is mainly constrained due to poor knowledge of the mechanism behind Cr stress tolerance. In the present study, two Brassica napus contrasting cultivars Ac-Excel and DGL were studied for Cr stress tolerance by using chlorophyll a fluorescence technique and biochemical attributes with and without melatonin (MT) treatments. Cr stress significantly reduced the PSII and PSI efficiency, biomass accumulation, proline content and antioxidant enzymes in both the cultivars. The application of MT minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-). Enhanced enzymatic activities of important antioxidants (SOD, APX, CAT, POD), proline and total soluble protein contents under MT application play an effective role in the regulation of multiple transcriptional pathways involved in oxidative stress responses. Higher NPQ and Y(NPQ) observed in Cr stress tolerant cv Ac-Excel, indicating that the MT-treated tolerant cultivar had better ability to protect PSII under Cr stress by increasing heat dissipation as photo-protective component of NPQ. Reduced PSI efficiency along with increased donor end limitation of PSI in both canola cultivars further confirmed the lower PSII activity and electron transport from PSII. The Cr content was higher in cv. DGL as compared to (that in Ac-Excel). The application of MT significantly decreased the Cr content in leaves of both cultivars. Overall, MT-induced Cr stress tolerance in canola cultivars can be related to improved PSII activity, Y(NPQ), and antioxidant potential and these physiological attributes can effectively be used to select cultivars for Cr stress tolerance.


Asunto(s)
Brassica napus/efectos de los fármacos , Brassica napus/fisiología , Cromo/toxicidad , Melatonina/farmacología , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Clorofila/metabolismo , Transporte de Electrón/efectos de los fármacos , Enzimas/metabolismo , Retroalimentación Fisiológica , Genotipo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Estrés Fisiológico/efectos de los fármacos
11.
Physiol Plant ; 172(2): 1133-1148, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33599291

RESUMEN

Climate change, food insecurity, water scarcity, and population growth are some of today's world's frightening problems. Drought stress exerts a constant threat to field crops and is often seen as a major constraint on global agricultural productivity; its intensity and frequency are expected to increase in the near future. The present study investigated the effects of drought stress (15% w/v polyethylene glycol PEG-6000) on physiological and biochemical changes in five Brassica napus cultivars (ZD630, ZD622, ZD619, GY605, and ZS11). For drought stress induction, 3-week-old rapeseed oil seedlings were treated with PEG-6000 in full strength Hoagland nutrient solution for 7 days. PEG treatment significantly decreased the plant growth and photosynthetic efficiency, including primary photochemistry (Fv/Fm) of PSII, intercellular CO2 , net photosynthesis, chlorophyll contents, and water-use efficiency of all studied B. napus cultivars; however, pronounced growth retardations were observed in cultivar GY605. Drought-stressed B. napus cultivars also experienced a sharp rise in H2 O2 generation and malondialdehyde (MDA) content. Additionally, the accumulation of ROS was accompanied by increased activity of enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase), although the increase was more obvious in ZD622 and ZS11. Drought stress also caused an increased endogenous hormonal biosynthesis (abscisic acid, jasmonic acid, salicylic acid) and accumulation of total soluble proteins and proline content, but the extent varies in B. napus cultivars. These results suggest that B. napus cultivars have an efficient drought stress tolerance mechanism, as shown by improved antioxidant enzyme activities, photosynthetic and hormonal regulation.


Asunto(s)
Brassica napus , Antioxidantes , Sequías , Fotosíntesis , Plantones
12.
Ecotoxicol Environ Saf ; 208: 111744, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396070

RESUMEN

Arsenic (As) a non-essential element is of particular concern with respect to harmful effects on plant metabolism. While extensive studies have been conducted on the physiological responses of plants to increase As concentrations, however, molecular differences elucidating species-specific changes remain largely unknown. In the present experiment, two oilseed Brassica napus (B. napus) cultivars, ZS758 and ZD622, were treated by elevated As concentration. Their responses to the As stress have been investigated through pulse amplitude modulated fluorometer and isobaric tags based proteomic (iTRAQ) analysis. The chlorophyll fluorescence attributes showed that As stress significantly decrease the photochemical efficiency of photosystem II (PSII) and photosystem I (PSI) as well as the comparatively closed stomata observed under scanning electron microscopy (SEM). In this study, 65 proteins displayed increased abundance and 52 down-regulated were found in the control vs As comparison in cultivar ZS758, while 44 up and 67 down-regulated proteins were found in the control vs As comparison in ZD622. Metabolic pathways, followed by ribosome and biosynthesis of secondary metabolites were the dominant functional annotation categories among the differentially expressed protein (DEPs). Many genes involved in primary metabolism, stress and defense were found to be As-responsive DEPs and/or DEPs between these two cultivars. Based on these results, a schematic description of key processes involved in As tolerance in ZS758 and ZD622 is proposed, which suggests that higher tolerance in ZS758 depends on a multilevel coordination of efficient defense and energy metabolism. Real-time quantitative PCR supported the expression patterns of several genes encoding a protein similar to their corresponding DEPs. In addition, these findings could shed light in unraveling the molecular mechanisms of B. napus exposed to As stress and provide or improve essential understandings in the development of advanced B. napus cultivars against As resistance.


Asunto(s)
Arsénico/toxicidad , Brassica napus/efectos de los fármacos , Proteoma/metabolismo , Arsénico/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteómica/métodos
13.
Heliyon ; 6(7): e04364, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32695901

RESUMEN

Chromium toxicity is considered as a major problem for agricultural soil that reduced crop productivity by affecting photosynthetic tissues. Exogenous application of melatonin can alleviate the adverse effects of chromium toxicity on plant growth. However, little is known about its effect on thylakoidal protein complexes responsible for conversion of solar energy to biochemical energy. Chlorophyll fluorescence a transients considered one of the best non-invasive and rapid method for the evaluation of photosynthetic (Photosystem II) efficiency of plants and plant health under environmental stress conditions. In the present study, three-week old plants of two canola cultivars AC-Excel and DGL were applied to melatonin (0, 1, 5, 10 µM) when grown under chromium stress (0, 50 and 100 µM) for further two weeks. Chromium stress reduced the growth (fresh and dry weights of shoots and roots) of both canola cultivars and exogenous application of 5 and 10 µM melatonin improved the growth of canola at 50 or 100 µM chromium stress. This improvement was greater in cv DGL than in AC-Excel. Increasing chromium decreased the photosynthetic pigments (chlorophyll a and chlorophyll b). However, 5 and 10 µM melatonin application improved chlorophyll a at 50 µM chromium stress. Structural stability and efficiency of photosystem II (PSII) measured as performance index (PIABS) and ratios of fluorescence (Fv/Fm, Fv/Fo) Fv decreased due to chromium stress. JIP-test parameters showed that chromium stress increased the absorption and trapping fluxes with decrease in electron transport fluxes which caused the damage to reaction centers (RC), detachment of oxygen evolving complex (OEC) from RC or inefficiency of electron transfer from OEC to RC. Such adverse effects were greater in cv AC-Excel. However exogenous application of melatonin improved PIABS, electron transport per reaction center (ET/RC), reduced variable fluorescence at J step (VJ) reflecting melatonin protected PSII from chromium stress induced damage by protecting OEC. Thus, OJIP fluorescence transients are quite helpful for understanding the intersystem electron transport beyond photosystem II in canola cultivars due to melatonin application under chromium stress. FINDINGS: Exogenous application of melatonin alleviated toxic effects of chromium on plant growth of canola by modulating photosynthesis, enhanced photosystem II efficiency and regulation of electron transport flux to protect photo-inhibition of PSII from oxidative damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...