Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(14): 9836-9844, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34181400

RESUMEN

Nanoparticle (NP) emissions to the environment are increasing as a result of anthropogenic activities, prompting concerns for ecosystems and human health. In order to evaluate the risk of NPs, it is necessary to know their concentrations in various environmental compartments on regional and global scales; however, these data have remained largely elusive due to the analytical difficulties of measuring NPs in complex natural matrices. Here, we measure NP concentrations and sizes for Ti-, Ce-, and Ag-containing NPs in numerous global surface waters and precipitation samples, and we provide insights into their compositions and origins (natural or anthropogenic). The results link NP occurrences and distributions to particle type, origin, and sampling location. Based on measurements from 46 sites across 13 countries, total Ti- and Ce-NP concentrations (regardless of origin) were often found to be within 104 to 107 NP mL-1, whereas Ag NPs exhibited sporadic occurrences with low concentrations generally up to 105 NP mL-1. This generally corresponded to mass concentrations of <1 ng L-1 for Ag-NPs, <100 ng L-1 for Ce-NPs, and <10 µg L-1 for Ti-NPs, given that measured sizes were often below 15 nm for Ce- and Ag-NPs and above 30 nm for Ti-NPs. In view of current toxicological data, the observed NP levels do not yet appear to exceed toxicity thresholds for the environment or human health; however, NPs of likely anthropogenic origins appear to be already substantial in certain areas, such as urban centers. This work lays the foundation for broader experimental NP surveys, which will be critical for reliable NP risk assessments and the regulation of nano-enabled products.


Asunto(s)
Nanopartículas del Metal , Plata , Ecosistema , Humanos , Titanio
2.
Molecules ; 25(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255591

RESUMEN

As the production and use of cerium oxide nanoparticles (CeO2 NPs) increases, so does the concern of the scientific community over their release into the environment. Single particle inductively coupled plasma mass spectrometry is emerging as one of the best techniques for NP detection and quantification; however, it is often limited by high size detection limits (SDL). To that end, a high sensitivity sector field ICP-MS (SF-ICP-MS) with microsecond dwell times (50 µs) was used to lower the SDL of CeO2 NPs to below 4.0 nm. Ag and Au NPs were also analyzed for reference. SF-ICP-MS was then used to detect CeO2 NPs in a Montreal rainwater at a concentration of (2.2 ± 0.1) × 108 L-1 with a mean diameter of 10.8 ± 0.2 nm; and in a St. Lawrence River water at a concentration of ((1.6 ± 0.3) × 109 L-1) with a higher mean diameter (21.9 ± 0.8 nm). SF-ICP-MS and single particle time of flight ICP-MS on Ce and La indicated that 36% of the Ce-containing NPs detected in Montreal rainwater were engineered Ce NPs.


Asunto(s)
Técnicas Biosensibles , Cerio/química , Espectrometría de Masas , Nanopartículas/análisis , Nanopartículas/química , Agua/análisis , Agua/química , Filtración , Espectrometría de Masas/métodos , Tamaño de la Partícula , Sensibilidad y Especificidad
4.
Environ Sci Technol ; 54(11): 6859-6868, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32421333

RESUMEN

Nanoplastics (NPs; <0.1 µm) are speculated to be a bigger ecological threat due to their predicted wider distribution, higher concentrations, and bioavailability. Primary NPs are manufactured to be that size, while secondary NPs originate from fragmentation of bigger debris. To date, the long-term impact of NPs in freshwater systems, particularly secondary NPs, is not well-understood. Thus, we employed a freshwater invertebrate, Daphnia magna, to investigate the chronic effects of model primary NPs, fluorescent polystyrene nanospheres (PS-NPs; 20 nm), and water leachate of weathered single-use plastics that contained micro- and nanosized particles. In experiment 1, parent Daphnia (F0) were exposed to 1 and 50 mg/L PS-NPs until the production of the neonates (F1) followed by a two-generation recovery. PS-NPs were mainly detected in the intestine and brood chamber in F0 and transferred to F1 and F2. PS-NPs significantly decreased the appendage curling and heartbeat rate in F0 and reduced reproduction in F2. In experiment 2, the plastic leachate also reduced the appendage curling rate but increased growth and reproduction. The results suggest that the acute toxicity of primary and secondary plastic particles is low even at high concentrations, but their chronic and sublethal effects should not be overlooked.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Agua Dulce , Humanos , Recién Nacido , Plásticos/toxicidad , Poliestirenos/toxicidad , Reproducción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Proc Natl Acad Sci U S A ; 116(50): 25156-25161, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767765

RESUMEN

Artificial athletic turf containing crumb rubber (CR) from shredded tires is a growing environmental and public health concern. However, the associated health risk is unknown due to the lack of toxicity data for higher vertebrates. We evaluated the toxic effects of CR in a developing amniote vertebrate embryo. CR water leachate was administered to fertilized chicken eggs via different exposure routes, i.e., coating by dropping CR leachate on the eggshell; dipping the eggs into CR leachate; microinjecting CR leachate into the air cell or yolk. After 3 or 7 d of incubation, embryonic morphology, organ development, physiology, and molecular pathways were measured. The results showed that CR leachate injected into the yolk caused mild to severe developmental malformations, reduced growth, and specifically impaired the development of the brain and cardiovascular system, which were associated with gene dysregulation in aryl hydrocarbon receptor, stress-response, and thyroid hormone pathways. The observed systematic effects were probably due to a complex mixture of toxic chemicals leaching from CR, such as metals (e.g., Zn, Cr, Pb) and amines (e.g., benzothiazole). This study points to a need to closely examine the potential regulation of the use of CR on playgrounds and artificial fields.


Asunto(s)
Materiales de Construcción/toxicidad , Exposición a Riesgos Ambientales/análisis , Goma/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/embriología , Embrión de Pollo , Desarrollo Embrionario , Salud Ambiental , Reciclaje , Pruebas de Toxicidad
6.
Anal Chem ; 91(20): 13275-13284, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31542921

RESUMEN

As the production and use of engineered nanomaterials increase, there is an urgent need to develop analytical techniques that are sufficiently sensitive to be able to measure the very small nanoparticles (NP) at very low concentrations. Although single particle ICP-MS (SP-ICP-MS) is emerging as one of the best techniques for detecting NP, it is limited by relatively high size detection limits for several NP, including many of the oxides. The use of a high sensitivity sector field ICP-MS (ICP-SF-MS), microsecond dwell times, and dry aerosol sample introduction systems were examined with the goal of lowering the size detection limits of the technique. For samples injected as a wet aerosol, size detection limits as low as 4.9 nm for Ag NP and 19.2 nm for TiO2 NP were determined. By using a dry aerosol, a significant gain in ion extraction from the plasma was obtained, which resulted in a noticeable decrease of the size detection limits to 3.5 nm for the Ag NP and 12.1 nm for the TiO2 NP. These substantial improvements were applied to the detection of TiO2 NP in sunscreen lotions, rainwaters, and swimming pool waters. Concentrations of Ti-containing NP between 27 and 193 µL-1 were found in rain samples. Similar NP concentrations were detected in public swimming pools, although much higher particle number concentrations (6046 ± 290 µL-1) were measured in a paddling pool, which was attributed to a high concentration of sunscreen lotions in a small recirculated water volume. High losses of TiO2 NP through adsorption or agglomeration resulted in recoveries ranging from 14-34%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...