Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 458: 140193, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959798

RESUMEN

In this study, we evaluated the potential for exogenous thymol to slow this decline by measuring the effects of thymol application on cell wall, energy, and membrane lipid metabolism. The results showed that thymol application improved the preservation of the total soluble solids, titratable acidity, decay rate, and anthocyanin content, and effectively inhibited the accumulation of O2·-, H2O2, and malondialdehyde in blueberries during storage. Thymol application also effectively maintained fruit firmness, cell wall structure, and energy levels, while delaying the degradation of membrane phospholipids and unsaturated fatty acids during the storage of post-harvest blueberries. Therefore, exogenous thymol can maintain the quality of blueberry fruits by regulating energy and membrane lipid metabolism and reducing cell wall degradation. Thus, thymol-treatment could be a suitable biocontrol agent for maintaining blueberry quality and extending blueberry fruit storage life.


Asunto(s)
Arándanos Azules (Planta) , Pared Celular , Frutas , Metabolismo de los Lípidos , Timol , Arándanos Azules (Planta)/química , Arándanos Azules (Planta)/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/química , Pared Celular/efectos de los fármacos , Timol/metabolismo , Timol/análisis , Timol/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , Conservantes de Alimentos/farmacología , Antocianinas/metabolismo , Antocianinas/análisis , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Metabolismo Energético/efectos de los fármacos
2.
Foods ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731681

RESUMEN

Highly prized for its unique taste and appearance, pitaya is a tasty, low-calorie fruit. It has a high-water content, a high metabolism, and a high susceptibility to pathogens, resulting in an irreversible process of tissue degeneration or quality degradation and eventual loss of commercial value, leading to economic loss. High quality fruits are a key guarantee for the healthy development of economic advantages. However, the understanding of postharvest conservation technology and the regulation of maturation, and senescence of pitaya are lacking. To better understand the means of postharvest storage of pitaya, extend the shelf life of pitaya fruit and prospect the postharvest storage technology, this paper analyzes and compares the postharvest quality changes of pitaya fruit, preservation technology, and senescence regulation mechanisms. This study provides research directions for the development of postharvest storage and preservation technology.

3.
Front Chem ; 10: 934032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910744

RESUMEN

The acceptance of kiwifruit by consumers is significantly affected by its slow ripening and susceptibility to deterioration. Ready-to-eat "Guichang" kiwifruit and its preparation technology were studied by the regulation of ethylene and 1-MCP. Harvested kiwifruits were treated with 100-2000 µl L-1ethylene for 36 h (20°C) and then treatment with 0-0.5 µl L-1 1-MCP. The results showed that the preservation effect of 0.5 µl L-1 1-MCP is inefficient when the soluble solid content of kiwifruit exceeded 15%. The ethylene-treated fruits reached an "edible window" after 24 h, but a higher concentration of ethylene would not further improve ripening efficiency, while the optimal ethylene concentration was 250 µl L-1. Moreover, after 250 µl L-1 ethylene treatment, 0.5 µl L-1 1-MCP would effectively prolong the "edible window" of fruits by approximately 19 days. The volatile component variety and ester content of 0.5 µl L-1 1-MCP-treated fruits were not different from those of the CK group. Principal component analysis and hierarchical cluster analysis indicated that the eating quality of fruits treated with 0.5 µl L-1 1-MCP was similar to that of fruits treated with ethylene. Consequently, ready-to-eat "Guichang" kiwifruit preparation includes ripening with 250 µl L-1 (20°C, 36 h) ethylene without exceeding the 1-MCP threshold and then treated with 0.5 µl L-1 1-MCP (20°C, 24 h). This study highlights the first development of a facile and low-cost preparation technology for ready-to-eat "Guichang" kiwifruit, which could reduce the time for harvested kiwifruit to reach the "edible window" and prolong the "edible window" of edible kiwifruit.

4.
Front Chem ; 10: 957581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942476

RESUMEN

In this study, to investigate the physiological and molecular mechanisms of melatonin inhibiting the postharvest rot of blueberry fruits, blueberry fruits were dipped in 0.3 mmol L-1 melatonin solution for 3 min and stored at 0°C for 80 days. The results indicated that melatonin did not significantly (p > 0.05) inhibit the mycelial growth or spore germination of Alternaria alternata, Botrytis cinerea, and Colletotrichum gloeosporioides. In addition, an in vivo study revealed that melatonin treatment increased the enzymatic activities of phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), polyphenol oxidase (PPO), and peroxidase (POD) in fruits. Furthermore, genes related to jasmonic acid synthesis were upregulated (VaLOX, VaAOS, and VaAOC), as were those related to pathogenesis-related proteins (VaGLU and VaCHT) and phenylpropane metabolism (VaPAL, VaC4H, Va4CL, VaCAD, VaPPO, and VaPOD), which promoted the accumulation of total phenols, flavonoids, anthocyanins, and lignin in the fruits. These results suggest that melatonin enhances the postharvest disease resistance of blueberry fruits by mediating the jasmonic acid signaling pathway and the phenylpropane pathway.

5.
Foods ; 10(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681482

RESUMEN

The performance of p-Anisaldehyde (PAA) for preserving pitaya fruit quality and the underpinning regulatory mechanism were investigated in this study. Results showed that PAA treatment significantly reduced fruit decay, weight loss and loss of firmness, and maintained higher content of total soluble solids, betacyanins, betaxanthins, total phenolics and flavonoids in postharvest pitaya fruits. Compared with control, the increase in hydrogen peroxide (H2O2) content and superoxide anion (O2•-) production was inhibited in fruit treated with PAA. Meanwhile, PAA significantly improved the activity of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Moreover, PAA-treated pitaya fruit maintained higher ascorbic acid (AsA) and reduced-glutathione (GSH) content but lower dehydroascorbate (DHA) and oxidized glutathione (GSSG) content, thus sustaining higher ratio of AsA/DHA and GSH/GSSG. In addition, activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydrogenation ascorbic acid reductase (DHAR), as well as the expression of HpSOD, HpPOD, HpCAT, HpAPX, HpGR, HpDHAR and HpMDHAR, were enhanced after PAA treatment. The findings suggest that postharvest application of PAA may be a reliable method to control postharvest decay and preserve quality of harvested pitaya fruit by enhancing the antioxidant potential of the AsA-GSH cycle and activating an antioxidant defense system to alleviate reactive oxygen species (ROS) accumulation.

6.
Plant Cell Physiol ; 60(11): 2410-2422, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31340013

RESUMEN

Linoleic acid (LA; C18:2) and α-linolenic acid (ALA; C18:3) are two essential unsaturated fatty acids that play indispensable roles in maintaining membrane integrity in cold stress, and ω-3 fatty acid desaturases (FADs) are responsible for the transformation of LA into ALA. However, how this process is regulated at transcriptional and posttranscriptional levels remains largely unknown. In this study, an MYB transcription factor, MaMYB4, of a banana fruit was identified and found to target several ω-3 MaFADs, including MaFAD3-1, MaFAD3-3, MaFAD3-4 and MaFAD3-7, and repress their transcription. Intriguingly, the acetylation levels of histones H3 and H4 in the promoters of ω-3 MaFADs were elevated in response to cold stress, which was correlated with the enhancement in the transcription levels of ω-3 MaFADs and the ratio of ALA/LA. Moreover, a histone deacetylase MaHDA2 physically interacted with MaMYB4, thereby leading to the enhanced MaMYB4-mediated transcriptional repression of ω-3 MaFADs. Collectively, these data demonstrate that MaMYB4 might recruit MaHDA2 to repress the transcription of ω-3 MaFADs by affecting their acetylation levels, thus modulating fatty acid biosynthesis. Our findings provided new molecular insights into the regulatory mechanisms of fatty acid biosynthesis in cold stress in fruits.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Frutas/metabolismo , Histona Desacetilasas/metabolismo , Musa/metabolismo , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Frutas/genética , Musa/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999552

RESUMEN

Sugar level is an important determinant of fruit taste and consumer preferences. However, upstream regulators that control sugar accumulation during fruit maturation are poorly understood. In the present work, we found that glucose is the main sugar in mature pitaya (Hylocereus) fruit, followed by fructose and sucrose. Expression levels of two sucrose-hydrolyzing enzyme genes HpINV2 and HpSuSy1 obviously increased during fruit maturation, which were correlated well with the elevated accumulation of glucose and fructose. A WRKY transcription factor HpWRKY3 was further identified as the putative binding protein of the HpINV2 and HpSuSy1 promoters by yeast one-hybrid and gel mobility shift assays. HpWRKY3 was localized exclusively in the nucleus and possessed trans-activation ability. HpWRKY3 exhibited the similar expression pattern with HpINV2 and HpSuSy1. Finally, transient expression assays in tobacco leaves showed that HpWRKY3 activated the expressions of HpINV2 and HpSuSy1. Taken together, we propose that HpWRKY3 is associated with pitaya fruit sugar accumulation by activating the transcriptions of sucrose metabolic genes. Our findings thus shed light on the transcriptional mechanism that regulates the sugar accumulation during pitaya fruit quality formation.


Asunto(s)
Cactaceae/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/metabolismo , Cactaceae/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hidrólisis , Proteínas de Plantas/genética , Factores de Transcripción/genética , Activación Transcripcional
8.
Plant J ; 96(6): 1191-1205, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30242914

RESUMEN

Starch degradation is a necessary process determining banana fruit quality during ripening. Many starch degradation-related genes are well studied. However, the transcriptional regulation of starch degradation during banana fruit ripening remains poorly understood. In this study, we identified a MYB transcription factor (TF) termed MaMYB3, as a putative protein binding the promoter of MaGWD1, a member of glucan water dikinase (GWD) family which has been demonstrated as an important enzyme of starch degradation. MaMYB3 was ripening- and ethylene-repressible, and its expression was negatively correlated with starch degradation. Acting as a nucleus-localized transcriptional repressor, MaMYB3 repressed the transcription of 10 starch degradation-related genes, including MaGWD1, MaSEX4, MaBAM7-MaBAM8, MaAMY2B, MaAMY3, MaAMY3A, MaAMY3C, MaMEX1, and MapGlcT2-1, by directly binding to their promoters. Interestingly, a previously identified activator of starch degradation-related genes, MabHLH6, was also suppressed by MaMYB3. The ectopic overexpression of MaMYB3 in tomato down-regulated the expression of starch degradation-related genes, inhibited starch degradation and delayed fruit ripening. Based on these findings, we conclude that MaMYB3 negatively impacts starch degradation by directly repressing starch degradation-related genes and MabHLH6, and thereby delays banana fruit ripening. Collectively, our study expands our understanding of the complex transcriptional regulatory hierarchy modulating starch degradation during fruit ripening.


Asunto(s)
Frutas/crecimiento & desarrollo , Musa/metabolismo , Proteínas de Plantas/fisiología , Almidón/metabolismo , Factores de Transcripción/fisiología , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiología , Musa/genética , Musa/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética
9.
J Agric Food Chem ; 65(18): 3627-3635, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28445050

RESUMEN

Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.


Asunto(s)
Ácido Abscísico/farmacología , Musa/efectos de los fármacos , Musa/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Musa/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética
10.
J Agric Food Chem ; 64(4): 738-45, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26760434

RESUMEN

Previous studies indicated that methyl jasmonate (MeJA) treatment could effectively reduce the chilling injury of many fruits, including banana, but the underlying mechanism is poorly understood. In this study, one lateral organ boundaries (LOB) domain (LBD) gene, designated as MaLBD5, was isolated and characterized from banana fruit. Expression analysis revealed that accumulation of MaLBD5 was induced by cold temperature and MeJA treatment. Subcellular localization and transactivation assays showed that MaLBD5 was localized to the nucleus and possessed transcriptional activation activity. Protein-protein interaction analysis demonstrated that MaLBD5 physically interacted with MaJAZ1, a potential repressor of jasmonate signaling. Furthermore, transient expression assays indicated that MaLBD5 transactivated a jasmonate biosynthesis gene, termed MaAOC2, which was also induced by cold and MeJA. More interestingly, MaJAZ1 attenuated the MaLBD5-mediated transactivation of MaAOC2. These results suggest that MaLBD5 and MaJAZ1 might act antagonistically in relation to MeJA-induced cold tolerance of banana fruit, at least partially via affecting jasmonate biosynthesis. Collectively, our findings expand the knowledge of the transcriptional regulatory network of MeJA-mediated cold tolerance of banana fruit.


Asunto(s)
Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Musa/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Frío , Frutas/genética , Frutas/metabolismo , Musa/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Activación Transcripcional
11.
Plant Cell Rep ; 33(11): 1913-20, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25097074

RESUMEN

KEY MESSAGE: The ripening-induced MaBSD1 acts as a transcriptional activator, and might be involved in banana fruit ripening partly through directly activating the expression of two ripening-associated genes, MaEXP1/2. BSD (BTF2-like transcription factors, synapse-associated proteins and DOS2-like proteins) transcription factors are characterized by a typical BSD domain. However, little information is available concerning their possible roles in plant growth and development, especially in fruit ripening. In the present study, one BSD gene, designated as MaBSD1, was isolated from banana fruit. MaBSD1 has an open reading frame (ORF) of 921 bp which encodes a polypeptide of 306 amino acid residues with molecular weight of 34.80 kDa, and isoelectric point (pI) of 4.54. Subcellular localization and transcriptional activation assays showed that MaBSD1 was localized in both the nucleus and cytoplasm and possessed transcriptional activity. RT-qPCR and promoter activity analysis indicated that MaBSD1 was ethylene and ripening inducible, and the accumulation of MaBSD1 transcript was correlated well with the evolution of ethylene production and ripening process. Moreover, transient assay showed that MaBSD1 could activate the expression of two cell wall modification-related genes, MaEXP1/2, via directly interacting with their promoters. Together, these data suggest that ripening-induced MaBSD1 acts as a transcriptional activator and might be associated with banana fruit ripening, at least partially through directly activating the expression of MaEXP1/2, expanding the limited information concerning the BSD transcription factor in relation to fruit ripening.


Asunto(s)
Frutas/genética , Musa/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Musa/crecimiento & desarrollo , Musa/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Unión Proteica , Protoplastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Nicotiana/citología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA